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Abstract 

The paper explains that post quantum cryptography is necessary due to the introduction of quantum 

computing causing certain algorithms to be broken. We analyze the different types of post-quantum 

cryptography, quantum cryptography and quantum-resistant cryptography, to provide a thorough 

understanding of the current solutions to the problems and their limitations. We explain the current state of 

quantum computing and how it has changed over time while discussing possible attacks on both types of 

post-quantum cryptography. Next, current post-quantum algorithms are discussed, and implementations are 

demonstrated. Lastly, we conclude that due to quantum cryptography’s present limitations it is not a viable 

solution like it is often presented to be and that it is currently better to use quantum-resistant cryptography. 

 

1 Introduction 

The importance of studying and developing post-quantum cryptography can be understood by first 

understanding what traditional cryptography is, why we use it, how it works, and its weaknesses. Traditional 

cryptography has been used for thousands of years [32] to ensure the security of information so that 

malicious parties cannot tamper with important data. The idea behind traditional cryptography is to 

scramble or encrypt plaintext messages/information into a cipher-text by using a certain algorithm so that 

a third party cannot decrypt the message/information. Computers rely on these traditional algorithms so 

that our information can be secure.  

A prominent example of our reliance on these algorithms is our use of Transport Layer Security (TLS) to 

encrypt our network traffic and ensure no third party can violate the confidentiality, integrity, or authenticity 

of this traffic. TLS uses a certain algorithm called Rivest-Shamir-Adleman (RSA) encryption which is a 

type of public-key cryptography. RSA was originally developed in 1978 by Ron Rivest, Adi Shamir, and 

Leonard Adleman to replace the National Bureau of Standards algorithm [1]. RSA works through using 

two systems, Public-key encryption and by adding digital signatures to the messages/information.  RSA 
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can be explained with the help of the commonly used Alice and Bob example. Let us say Alice wants to 

send a private message to Bob using the RSA algorithm. The RSA algorithm uses two different keys.  The 

public key, available to everybody and used to encrypt the message, and the private key, only available to 

the owner (Bob) and used to decrypt the message. To generate the public key, we multiply two large prime 

numbers p and q together to create n, which is the modulus and choose a value, e, that is relatively prime 

to (p-1) * (q-1). The modulus n and exponent e together gives us the public key, the public key pair would 

look like (n,e). Now, to generate the private key, d, we use the formula: 

𝑒𝑑  =  1𝑚𝑜𝑑(𝑝 − 1) ⋅ (𝑞 − 1) 

The private key pair would look like (n,d). For RSA to work, the message must be converted to a series of 

numbers. From here, Alice would generate the cipher-text, c, using: 

𝑐  =  𝑆𝑒𝑚𝑜𝑑 𝑛 

where S is the plaintext. Then, Bob would use the RSA decryption formula: 

𝑐  =  𝑆𝑒𝑚𝑜𝑑 𝑛 

to retrieve the plaintext [3]. An additional layer of protection can be added to ensure the message sender is 

who they say they are. This is achieved in RSA by adding a signature, or unique string of digits generated 

through a hash function, to the original data, and using same encryption and decryption formulas as before.  

While RSA is extremely effective for current computers, its effectiveness relies on the assumption of the 

difficulty of computing n [3] with our current technology. This reliance on mathematical uncertainties is 

prevalent within many algorithms used in today’s world. However, it turns out that some of these 

assumptions are only applicable to the current capabilities of computers and are theoretically broken by the 

creation of quantum computing. RSA specifically will not be secure anymore because of a quantum 

algorithm known as Shor’s algorithm, developed in theory in 1994 by Peter Shor. Shor’s algorithm with 

Beauregard’s improvements reduces the complexity of finding a prime number to 𝑂(𝑛3 log 𝑛)and uses 2n 

+ 3 qubits [5], which makes solving the problem take a significantly shorter amount of time. The fact that 

our data will be compromised by algorithms like Shor’s is a leading motivator for research into quantum-

safe cryptographic measures.  

 

2 Post-Quantum Cryptography Preliminaries 

Post-quantum cryptography contains two different approaches, quantum cryptography and quantum-

resistant traditional cryptography. The first approach, quantum cryptography was first theorized in 1970 by 
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Stephen Wiesner but was only published by him in 1983 in “Conjugate Coding”, where he theorized a 

quantum communication channel, and a type of quantum money. The first difference between quantum 

cryptography and traditional cryptography is that quantum uses a unit called qubits instead of bits. A qubit 

has two distinct states of “0” and “1” much like a bit, but a qubit can also exist in superposition states. 

These superposition states allow the qubit to exist in both a pure form and a mixed state, which allows many 

more states to be represented in a smaller amount. By pure form and a mixed state, it means that a qubit 

can be represented as “1” in different ways. For example, a qubit could be “1” in a ground state or it could 

be “1” in an excited state. These superpositions provide the qubit with a lot more representation per unit 

than bits. A single qubit can be denoted as the matrices: 

| 0 ⟩ = [1 0] 

| 1 ⟩ = [0 1] 

Another fundamental difference between the two cryptographies is that quantum cryptography relies on 

quantum mechanics, a type of theory behind atoms and particle physics, so the properties behind quantum 

are concrete whereas traditional cryptography relies on mathematical uncertainties. The properties that are 

currently most important to quantum cryptography are the Heisenberg Uncertainty Principle, Quantum 

Entanglement, and the No-Cloning Theorem. The Heisenberg Uncertainty principle establishes that due to 

how some pairs of physical properties relate to one another, it is impossible to measure any object without 

disturbing it [8]. The Heisenberg Uncertainty can be utilized in cryptographic encryption to detect 

eavesdropping as any observance of data will cause it to be disturbed. Quantum Entanglement is a feature 

of qubits in which no matter the distance between two entangled qubits, the measurements will show a high 

correlation but will not be able to tell what value the qubit has. The use of quantum entanglement is essential 

for long-distance quantum key distribution [9]. The no-cloning theorem states that you cannot create an 

identical copy of a quantum state. These three properties are utilized for quantum key distribution (QKD) 

which is a widely researched type of cryptographic protocol that uses quantum mechanics to produce keys 

for encrypting and decrypting messages. On top of the quantum-based cryptography measures there are 

four main types of traditional quantum-resistant cryptography: lattice-based, code-based, hash-based, and 

multivariate polynomial. While these four types do not rely on quantum mechanics, they are safe from the 

current quantum algorithms because they do not rely on the hardness of factoring and discrete logarithm 

problems which have been solved with Shor’s algorithm. These traditional post-quantum cryptographic 

measures are necessary because widespread QKD is not yet feasible due to the inability to transmit qubits 

across the entire world. Also, the reliability of qubits is not at an adequate level to support main-stream 

usage. Next, we will discuss the current state of quantum. 
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3 Current Status of Quantum as It Pertains to QKD 

In the past 25 years there has been much improvement and development in many parts of quantum 

computers. First, is the number of qubits available, which has increased from 3-qubits in 1998 [12] to 433-

qubits with IBM’s Osprey Chip in 2022 [13] with an estimated 1,121-qubit processor estimated to be 

achieved in 2023. As more qubits are available, researchers are more accurately able to assess the impact 

of quantum algorithms because certain quantum algorithms require a lot of qubits. Second, is the distance 

at which we can reliably transmit quantum entangled particles across Earth's surface, which has been 

demonstrated at 1,120 kilometers (about 695.94 mi) by researchers in China using ground stations that 

transmit to a satellite and the satellite transmits to the other ground station [9]. This distance is significant 

progress as the transmission loss across distances has been a barrier to large-scale quantum networks [17]. 

When long distance transmission of quantum entangled particles is possible, then QKD will become more 

feasible because systems can be distributed across the world instead of needing to be close in proximity. 

Lastly, the overall reliability of a quantum computer’s qubits is still an issue, but IBM has recently 

developed error mitigating strategies that reduce the amount of noise by running a quantum computer’s 

circuit multiple times, so the error rate is lower, but this is at the cost of performance [15]. Reliability of a 

qubit is important in obtaining correct results from quantum algorithms, so with accurate qubits researchers 

will be able to test theoretical quantum algorithms and ensure the result is accurate. Overall, quantum 

computing is making slow but steady improvements but again, it is not sufficient for practical use yet. IBM 

researchers estimate that quantum computing will not be able to solve substantial engineering problems 

until about 2033 [16]. Next, we will discuss some modern quantum-resistant algorithms, their strengths and 

weaknesses, and explain and discuss a recent implementation of one of the most recent QKD algorithms 

developed, Twin fields quantum key distribution (TFQKD). 

 

4 Recent Cryptographic Methods 

4.1 CRYSTALS-Kyber: Chosen by NIST (National Institute for Standards and Technology) in 2022 for 

general encryption, this public-key encryption method utilizes complicated path-building within lattices to 

drastically increase computational time for quantum processors (10). To introduce the implementation, for 

background, the NTT (Number Theoretic Transform) will mathematically transform an input vector into a 

different vector by using the input vector’s values. The XOF (Extendable output function) will generate 

hashes of desired length; versions of XOF include SHAKE-128 and SHAKE-256. The CBD function will 

generate noise from an input by using the centered binomial distribution. Additionally, the environment for 

Kyber will use constant integers k, q, du, and dv. 
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To generate the keys, first, two values a and b are made from an SHA3 512 hash of a randomized byte array 

of length 32. Then, in a k * k sized two-dimensional matrix A, for every position in the matrix (i,j), the 

value at that position becomes an NTT representation of an XOF SHAKE-128 hash generated with 

parameters a, i, and j. In a one-dimensional matrix of length k, named S, each value becomes a CBD of an 

XOF SHAKE-256 hash generated with parameters b and the values’ literal indexes (for example, if setting 

the third value in the matrix, the parameters for the hash would be ‘b’ and 3). Set S to an NTT representation 

of itself. Another one-dimensional matrix of length k, named E, will be generated the same way as S was 

generated, but instead of using the values’ literal positions as a parameter, the sum of the position and ‘k’ 

will be used (for example, if ‘k’ is 5, and the fourth value of the matrix is being set, then the parameters 

used would be ‘b’ and 5 + 4 = 9). Similarly, set E to an NTT representation of itself. Now, a new matrix T 

will become the sum of E with the matrix product of A and S. The public key will be generated by encoding 

the concatenation of ‘T mod q’ with ‘a’ whilst the private key will be generated by encoding S mod q. 

In this environment, we will define another constant integer ‘n’, which is the product of the length of the 

private key with ‘
96

𝑘
’. To encrypt a message ‘m’, given the receiver’s public key ‘pk’ and a randomized byte 

array of length 32 ‘c’, first, ‘a’ is set to “𝑝𝑘  +  12  ⋅  𝑘  ⋅  
𝑛

8
“. In a k * k sized two-dimensional matrix A, for 

every position in the matrix (i,j), the value at that position becomes an NTT representation of an XOF 

SHAKE-128 hash generated with parameters a, i, and j. In a one-dimensional matrix of length k, named ‘r’, 

each value becomes a CBD of a SHAKE-256 hash generated with parameters ‘c’ and the values’ literal 

positions. Another one-dimensional matrix of length k, named ‘e1’, will be generated the same way as ‘r’ 

was generated, but instead of using the values’ literal positions as parameters, the sum of the position and 

‘k’ will be used. ‘R’ will become an NTT representation of ‘r’, and ‘u’ will become the sum of ‘e1’ with 

the inverse NTT of the matrix product of A and R. Then, ‘v’ will become the sum of the following: the 

inverse NTT of the matrix product of ‘R’ with the public key decoded, ‘e2’, and ‘m’ decoded and 

decompressed. Finally, the encrypted message will be the concatenation of ‘u’ compressed with parameter 

du and encoded along with ‘v’ compressed with parameter dv and encoded. 

For a receiver with private key ‘sk’, given a ciphertext ‘c’, ‘u’ will become ‘c’ decoded with parameter ‘du’ 

and decompressed, and ‘v’ will become ‘𝑐 + 𝑑𝑢 ⋅ 𝑘 ⋅
𝑛

8
’ decoded with parameter ‘dv’ and decompressed. 

Finally, the message is the private key decoded, matrix multiplied with the NTT representation of ‘u’, which 

becomes the parameter of inverse NTT, which is then subtracted from ‘v’, and finally, compressed and 

encoded to retrieve message ‘m’. 

Kyber, in addition to its difficult nature, is incredibly compact in size. Kyber comes in three flavors of 

increasing difficulty: Kyber-512, Kyber-768, and Kyber-1024. For NIST’s level of highest security, level 



 6 

5, the proposed solution is Kyber-1024, which when benchmarked, used only 4,376 bytes to store the keys, 

allowing continued security even for lower-end devices(11). 

4.2 Classic McEliece: Chosen by NIST in 2022 for round four of the Post-Quantum Cryptography 

Standardization process to continue for consideration for standardization, Classic McEliece is a KEM (Key-

Encapsulation Mechanism) based on the original McEliece cryptographic system, which has remained 

reliable for over 40 years [27,28]. The KEM allows two parties to generate a session key which is used for 

secure communication. Party A generates the session key and party B generates a public and private key. 

Party A will encrypt the session key with party B’s public key and send the encrypted session key to party 

B. Party B will decrypt the session key using their private key to retrieve the session key. Now both parties 

have a session key which can be used to “encapsulate” and “decapsulate” messages in a similar fashion to 

public-key encryption [29]. 

In Classic McEliece, for the public and private key, a finite field ‘F’ of order 2ᵐ for natural number m, a 

random monic irreducible polynomial function ‘g(z)’ of degree ‘t’ which is an element of ‘F’, a uniformly 

random subset of F of distinct elements ‘A’ of size ‘n’, and a uniform random n-bit string ‘s’ are held. A 

two-dimensional matrix ‘h’ of size t * n, where the value for each element at (i,j) is the product of the j’th 

element of A raised to the power of ‘i - 1’ with the inverse of g of the i'th element of A. Consider an m’th 

dimensional vector space ‘f’ over a finite field of order 2. Another matrix ‘Hˆ’ of size ‘𝑚𝑡 ⋅ 𝑛 ’ is generated 

by using vector space isomorphism between ‘F’ and ‘f’ to replace each entry of ‘h’ with vectors of ‘f’ 

arranged in columns. If possible, apply Gaussian elimination to ‘Hˆ’ for systematic matrix H containing a 

non-systematic component which is matrix ‘T’, otherwise repeat from the beginning. The public key will 

be ‘T’ and the private key is the set containing ‘s’, g(z), and ‘A’. 

To generate and encapsulate the session key, a uniform random vector ‘e’ with Hamming weight ‘t’ which 

is an element of ‘f’ is held. The systematic matrix H is reconstructed from public key T. Vector ‘C₀’ of 

length ‘m * t’ is the product of ‘H’ with ‘e’, and vector ‘C₁’ is a SHAKE256 hash with parameters 2 and 

‘e’. Vector C, a ciphertext, becomes a concatenation of C₀ and C₁ of length ‘𝑚𝑡 + 256 ’. The 256-bit session 

key K becomes a SHAKE256 hash with parameters 1, ‘e’, and ‘C’. 

To decapsulate the key using ‘C’, ‘C’ is split into ‘C₀’ and ‘C₁’. Vector ‘v’ becomes ‘C₀’ with ‘𝑛 − 𝑚𝑡 ’ 

number of zeros appended for (C₀, 0, 0, …, 0). Define a Goppa code represented by a set containing ‘g(z)’ 

and ‘A’. Niederreiter decoding is used to find the codeword ‘c’. If 'c' exists, then a vector ‘e’ becomes ‘v + 

c’, but if the hamming weight of ‘e’ is not equal to ‘t’, ‘C₀’ is not the product of ‘H’ and ‘e’, then ‘e’ 

alternatively becomes ‘s’. Additionally, a variable ‘b’ equals 1, but if the SHAKE256 hash with parameters 
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2 and ‘e’ does not equal ‘C₁’, then ‘b’ becomes 0 and ‘e’ becomes ‘s’. Finally, the SHAKE256 hash on ‘b’, 

‘e’, and ‘C’ results in the session key ‘K’ [30]. 

Given the long-withstanding nature of the McEliece cryptosystem, this derivation is likely to continue 

succeeding long term as post-quantum cryptography develops. Additionally, this mechanism uses low 

amounts of computational resources, where encapsulation and decapsulation use 500,000 cycles or less, 

while CRYSTALS-Kyber peaked at 1,009,448 cycles on Kyber1024-90s, the 90’s variant of their most 

intensive flavor [33, 11]. Unlike kyber, this mechanism trades off storage for performance; the size of the 

public key generated peaks at 1.4 megabytes, while the CRYSTALS-Kyber public key peaks at 1,568 bytes 

[30, 11]. While Kyber takes more computational time, in terms of compatibility, Kyber is a very effective 

choice compared to Classic McEliece. 

4.3 SPHINCS+: Chosen by NIST in 2022 for digital signing, SPHINCS+ is a stateless hash-based signature 

scheme reliant on the use of hash functions to allow authentication for a limited number of messages [27]. 

For background, SPHINCS+ requires use of W-OTS+ (Winternitz One-Time Signature) and XMSS 

(exTended Merkle Signature Scheme) to build a hypertree, and FORS (Forest of Random Subsets) to build 

the FORS-hypertree combination. 

W-OTS+: Given a SPHINCS+ signing key ‘sk’, ‘w’ number of bits in a window at a time, ‘W = 2ʷ’, we 

generate a public-private vector key pair. A private vector key ‘SK’ contains values generated by the PRF 

(pseudo-random function), which generates random sequences of values given a seed key. Here, each value 

in ‘SK’ is the PRF of ‘sk’. Additionally, the corresponding public vector key ‘PK’ of the same length as 

‘SK’ consists of values generated by a chaining pseudo-random function on each corresponding value 

within ‘SK’ (the chaining pseudo-random function repeatedly applies any hash function such as SHA2-256 

a specified number of times on a value). Now with ‘SK’, a signature for a message can be generated. A 

given message ‘msg’ is split into window chunks of ‘w’ number of bits. Consider the sum 

‘∑ (𝑊 − 1 − 𝑤𝑖)
 
𝑖 ’ for every window bit chunks wᵢ, and again split this sum into ‘w’ number of bits. In a 

new vector ‘σ’ of the size of the number of window bit chunks, for every value in ‘σ’, the i'th value in ‘σ’ 

is the result of the chaining pseudo-random function on the i'th value in ‘sk’, parameterized by the i'th 

window bit chunk. Now ‘σ’ becomes the signature for ‘msg’. Now with ‘σ’ and ‘msg’, the same public key 

‘PK’ can be extracted. Similarly, ‘msg’ is split into window chunks of ‘w’ number of bits. Consider the 

sum ‘∑ (𝑊 − 1 −𝑤𝑖)
 
𝑖 ’ for every window bit chunks wᵢ, and again split this sum into ‘w’ number of bits. 

In a new vector ‘pk’ of the size of the number of window bit chunks, for every value in ‘pk’, the i'th value 

in ‘pk’ is the result of the chaining pseudo-random function on the i'th value in ‘σ’, parameterized by ‘W - 

1 - wᵢ’, where wᵢ is the i'th window bit chunk. Now ‘pk’ should be the same public vector key ‘PK’. 
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XMSS: Given ‘h’ tree height and SPHINCS+ signing key ‘sk’, 2ʰ number of W-OTS+ public-private vector 

key pairs are generated. A vector containing the private vector keys from all the pairs becomes the XMSS 

signing key ‘SK’. Additionally, each corresponding public vector key is applied to any given hash function, 

such as SHA2-256, in the same ordering as the corresponding private vector keys in ‘SK’. A binary hash 

tree is created from these hashed public vector keys, where two keys are hashed together to a separate key 

for all keys to form a binary tree-like structure. For example, if ‘h = 3’, then 2³ = 8 nodes are created. The 

first layer will contain four nodes. Two of them are hashed to another node and the other two hashed to a 

separate node. The two nodes that were hashed to are now hashed to a different node. Now that this different 

node remains without enough other nodes to continue building the binary hash tree, this node becomes the 

root of the tree. Now with the binary hash tree of public vector keys, this becomes the public key ‘PK’. 

Now an “authentication path” within the binary hash tree can be signed using ‘SK’. For a public vector key 

node within ‘PK’, use its corresponding private vector key within ‘SK’ to produce ‘σ’, the W-OTS+ 

signature for the message. Additionally, compute ‘auth’, the authentication path for the index of this public 

vector key node within ‘PK’. The signature for the message becomes ‘(σ, auth)’. Like W-OTS+, given the 

signature and the known message ‘msg’, the XMSS public key can be extracted. Using W-OTS+ the 

corresponding W-OTS+ public vector key ‘pk’ is extracted using 'σ' and ‘msg’. Using XMSS, with ‘pk’ 

hashed by the same hash function used to generate the original XMSS public key, along with ‘auth’, the 

original XMSS public key ‘PK’ is extracted. 

Hypertree: Like XMSS, the hypertree for SPHINCS+ will be a tree composed of XMSS key pairs where 

nodes are “stacked” and the XMSS node above signs the node below. The tree is parameterized by height 

‘H’, total hypertree heigh ‘h’, and ‘d’ layers from 0 to ‘d - 1’, where the 0’th node is the bottommost node 

and the node at ‘d - 1’ is the top-most node. Given the SPHINCS+ signing key ‘sk’, the hyptertree signing 

key ‘SK’ becomes ‘sk’, and the hypertree public key ‘PK’ becomes the public of the XMSS public key at 

layer ‘d - 1’. In addition to the keys, note that due to the nature of the hypertree, given the tree index Tᵢ of 

a node in the hypertree where 0 ≤ i < d – 1, the tree index of the next node Tᵢ₊₁ and the index of the W-

OTS+ public vector key λᵢ₊₁ within that next node (recall it is a binary hash tree) can be found. From Tᵢ, Tᵢ₊₁ 

is the ‘ℎ − 𝐻(𝑖 + 1)’ number of most significant bits of Tᵢ, and λᵢ₊₁ is the ‘H’ number of least significant 

bits of Tᵢ. With a way to access every node in the hypertree, the tree can be signed. Given an n-byte digest 

‘r’ in hyper-leaf index 1 ≤ λ ≤ 2ʰ, suppose T₋₁ = λ and ‘σ’ is an empty vector. For integer ‘i’ from 0 to ‘d - 

1’, repeat the following three steps: (1) derive Tᵢ and λᵢ from Tᵢ₋₁, (2) generate XMSS keys ‘skᵢ’ and ‘pkᵢ’ at 

the corresponding address of Tᵢ, (3) sign ‘r’ with ‘skᵢ’ using leaf index λᵢ to produce σᵢ, append σᵢ to σ, and set 

‘r’ to ‘pkᵢ’. The signature of the hypertree is the resulting vector ‘σ’. Observing this signing process, ‘r’ acts 

as a temporary holder for the public key of the previous node, then the current iteration signs ‘r’ using the 

current node’s signing key, hence a “linking” between nodes to form a greater authentication path. The 
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hypertree signing key can now be used to extract the public key from the hypertree. Given the signing key 

‘σ’, for integer ‘i’ from 0 to ‘d - 1’, repeat the following three steps: (1) derive Tᵢ and λᵢ from Tᵢ₋₁, (2) extract 

the current XMSS node’s public key ‘pkᵢ’ from ‘σᵢ’ by using the message at the corresponding address of 

‘Tᵢ’ and the leaf index ‘λᵢ’, (3) set ‘r’ to ‘pkᵢ’. Once ‘r’ is updated with the final public key, its value will be 

pkd−1, the XMSS public key at layer ‘d - 1’, which is the hypertree public key ‘PK’. 

FORS: Given a SPHINCS+ signing key ‘sk’, ‘address ‘ADRS’, ‘k’ number of FORS trees, and ‘t = 2ᵃ’ 

number of tree leaves for tree height ‘a’, for every FORS tree, the signing key ‘SKᵢ’ for the i'th tree becomes 

a vector of length ‘t’, where the j’th value in the vector is the result of the pseudorandom function applied 

to ‘sk’ with parameter ‘ADRS’. Subsequently for the public key, ‘PKᵢ’, apply any hash function to every 

value in ‘SKᵢ’ and create a binary hash tree from the values in ‘SKᵢ’ in the same manner as creating the 

public binary hash tree key in XMSS. The resulting hash tree is the public key ‘PKᵢ’. Finally, overall, for 

FORS, the signing key ‘SK’ is the collection of the signing keys from all the FORS trees, and the public 

key ‘PK’ is the result of any hash function applied to the collection of all the FORS trees’ public keys with 

parameter 'ADRS’. These keys can be used to sign an m-bit digest ‘md’. ‘md’ is split into chunks (m₁, …, 

mₖ) of ‘a’ number of bits. For every chunk, for mᵢ, retrieve the leaf at mᵢ in the i'th FORS subtree by 

retrieving the i'th signing key in ‘SK’ and retrieving sₘi from the i'th signing key. Apply the same hash 

function used when generating the binary hash tree public keys for the FORS subtrees to sₘi  to generate 

‘authᵢ’ authentication path. Finally, the signing vector becomes a collection of collections σ = ( (sₘ1, auth₁), 

…, (sₘk, authₖ) ). Now σ can be used with ‘md’ to extract the public key. ‘md’ is split into chunks (m₁, …, 

mₖ) of ‘a’ number of bits. For every chunk, for mᵢ, recompute the public key ‘PKᵢ’ of the i'th FORS subtree 

by using the same hash function used during FORS signing applied to sᵢ, the first value in the i'th collection 

from σ. Subsequently, on a collection of these FORS subtrees public keys generated, apply the same hash 

function used when generating the FORS ‘PK’ key, with parameter ADRS, to reproduce ‘PK’, the original 

FORS public key. 

SPHINCS+ signing: Given message ‘msg’, pk₁ public key of a hypertree, and SPHINCS+ signing keys sk₁ 

and sk₂, generate ‘R’ as the result of applying the pseudorandom function to ‘msg’ with parameter sk₂. 

Generate ‘md’ and ‘ADRS’ resulting from any hash function applied to ‘msg’ with parameters ‘pk₁’ and 

‘R’. Create signature ‘σᶠ’ by signing ‘md’ with FORS at address ‘ADRS’ using sk₁, and let ‘PK’ be the 

corresponding FORS public key. Sign ‘PK’ with the hypertree for ‘σʰᵗ’. Finally, the signature for the 

message is the collection (R, σᶠ, σʰᵗ). 

SPHINCS+ verification: Given pk₁ public key of the hypertree from signing, SPHINCS+ signature (R, σᶠ, 

σʰᵗ), and message ‘msg’, ‘md’ and ‘ADRS’ are produced by applying the same hash function (used to 

generate ‘md’ and ‘ADRS’ from signing) to ‘msg’ with parameters ‘pk₁’ and ‘R’. Extract ‘PKᶠ’ using ‘md 
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and ’σᶠ’ to get the public key of the FORS at ‘ADRS’. Extract ‘PKʰᵗ’ by using ‘PKᶠ’ and ‘σʰᵗ’ to get the 

public key of the hypertree at the leaf index from ‘ADRS’. If ‘PKʰᵗ’ is the same as ‘pk₁’, the message is 

authenticated, otherwise the message is not authenticated [31, 27]. 

In terms of security, SPHINCS+ is made increasingly secure by the assumed hash functions used. 

SPHINCS+ does not use set defined hash functions, but instead the implementers decide what hash function 

to use, so if strong hash functions are used when implementing SPHINCS+, this becomes a very strong 

signature system. Additionally, most implementations of SPHINCS+ lead to high computational times and 

concerning signature size; on optimized implementations supporting the AVX2 instruction set, SPHINCS+ 

with SHA2 hashing used, at minimum, 33.7 million cycles to generate the message signature, which outdoes 

McEliece and Kyber by a very high margin. Additionally, the signature size for SPHINCS+ peaked at 

48,856 bytes, which is much less compared to McEliece, yet Kyber leads by a higher margin. While bulkier, 

NIST noted, among its four post-quantum choices, that SPHINCS+ is useful as an alternative to its efficient 

lattice-based competitors for its alternative math approach with hash functions [10, 35]. 

4.4 Twin fields quantum key distribution: Twin fields quantum key distribution (TFQKD) was first 

proposed in 2018 by Marco Lucamarini et al. [16] and has quickly risen to become a very popular and 

promising solution to quantum key distribution across long distances. The authors’ goal behind their paper 

was to propose a type of QKD that does not rely on the use of quantum repeaters to transmit across long 

distances. The motivation to bypass quantum repeaters is that quantum repeaters are not yet a feasible piece 

of technology despite the recent advancements, as we need something that can be implemented feasibly 

today [16]. To explain the TFQKD protocol, we will use an Alice and Bob example. First, Alice and Bob 

will both have a light source and an interferometer while a third-party Charlie will have a beam splitter and 

detectors. Next, these light sources will be used to create two random phases between [0,2𝜋) and will then 

be encoded with two sets of secret bits and bases, which are essentially encoding phrases. These are sent as 

pulses to a third-party station Charlie, who could even be a malicious individual. Charlie will then utilize a 

beam splitter to overlap the pulses to measure them. Charlie will then tell Alice and Bob which of the 

detectors lit up, one lights up if the bits are equal while the other lights up if they are different. Due to 

having the detectors, Charlie will also be able to tell whether the bits were equal or not but not what their 

values are, thus keeping the protection against eavesdropping intact. After Alice and Bob know which 

detector lights up, they will publicly announce the random phase and the encoding phrase. If their phases 

are equal, they will be considered “twins”, and these "twins” will be saved while the phases that are not 

equal will be discarded. Additionally, to protect against eavesdropping, decoy states are employed, which 

are fake or decoy quantum states that are purely used to detect eavesdropping. The phase “randomization” 

mentioned earlier and decoy states are necessary to support long-distance TFQKD’s security. It is important 
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to note that there are performance impacts to adding decoy states, so to reduce this the devices utilizing 

TFQKD must alternate between code and decoy modes. 

A recent implementation of TFQKD was demonstrated in 2022 by a group of researchers across an 830-

km fiber cable. To achieve this feat, the researchers used a laser with a central wavelength of 1,550.12 nm 

and a linewidth of 0.1 kHz, which was then split in two and sent to both ends (Alice and Bob for example), 

across 411.55 km (about 255.73 mi) each through servo channels to their source parts. The two light beams 

were again split in half at the source part using beam splitters to allow one to be used for locking each of 

their local laser’s central wavelength and the other to get sent through a chopper, encoder, and regulator to 

ultimately get sent into the quantum channel. At the source part, their light beams were stabilized to a fixed 

state of polarization by a polarization compensation module (PCM). The PCM then interfered with the light 

beam which was detected by two positive-intrinsic-negative (PIN) detectors. Then, using the values 

detected by the PINs, a homodyne optical phase-locked loop (OPLL) stabilized the difference between the 

values and made their difference near zero and had its noise reduced using a negative-feedback phase 

modulator (PM). Next, the other half of the original light beam, which was now locked at the correct 

wavelength, was passed through the chopper which consisted of two acousto-optic modulators (AOMs) 

operating at an 80-MHz frequency shift and one intensity modulator (IM) modulating at a width of 60 

picoseconds at 4Ghz. Inside of the chopper, the IM modulated the light into a pulse train. The AOM+ and 

AOM- components then chopped up the pulse train into a time-multiplexed reference part and a quantum 

part. Next, the quantum part was operated on in the encoder which consisted of three IMs and two PMs. 

The encoder alternated code and decoy modes like we mentioned earlier. While the encoder was in code 

mode, the IMs created one quantum state with an intensity, and the PMs generated random phases between 

and [0,
𝜋

2
].While in decoy mode, the IMs created three separate quantum states with separate intensities 

while the PMs created random phases between [0,2𝜋]. Next, the light went into the regulator to get high 

interference. The high interference was achieved by using a dispersion compensation module (DCM) using 

fiber-Bragg-grating technology, a variable optical delay (VOD), and a variable optical attenuator (VOA). 

Lastly, the modified light beams were sent through a quantum channel made of G.654.E ULL optical fiber 

to a third party’s (Charlie for example) beam splitter, then two detectors comprised of NbN thin films 

checked the lights truth values [19]. 

 

5 Quantum Attacks on Modern Cryptography 

Only a decade after quantum computers were first proposed, scientists and mathematicians were already 

developing algorithms to break common cryptography methods. In 1994, Daniel Simon developed Simon’s 
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algorithm. Then, in the same year, mathematician Peter Shor developed an algorithm based on modular 

arithmetic that would be able to break RSA and Diffie–Hellman key encryption. Two years later in 1996, 

computer scientist Lov Grover devised an algorithm that highlights the speed-up that could be achieved 

with quantum computers.   

When it comes to breaking the encryption standards we use today, Shor’s algorithm is seen as the biggest 

threat. The security of RSA encryption comes from the difficulty of finding the prime factors of very large 

numbers. This task is the very thing Shor’s algorithm was designed to do. It works by performing 

calculations that bring it closer to a solution with each step. If we have a number, N, that fits the parameters 

of RSA encryption, we first choose some guess, a, such that 1 < a < N. Then, we can perform a series of 

calculations of 𝑎𝑟𝑚𝑜𝑑 𝑁, where r is increased by 1 for each iteration. Eventually, the results of this equation 

will begin repeating. The number of values in one repetition is called the order, denoted by r. This step is 

the order finding sub-routine and it is the quantum portion of the algorithm. It involves modular 

exponentiation and an inverse quantum Fourier-transform. Once r is found, it can be plugged into the 

equation gcd(𝑎
𝑟

2 ± 1,  𝑁). The results of this will be the prime factors of N.  

Shor’s algorithm is quite intensive when it comes to the required resources. As the value of N increases, 

the number qubits and gates needed quickly exceeds what we have available. As of now, quantum 

computing technology has not been able to perform these demonstrations without using some pre-

determined parameters to reduce the resource requirements of the system [24]. In 2001, a group of 

researchers at IBM successfully used Shor’s algorithm to find the prime factors of 15. This was done using 

a process called nuclear magnetic resonance [20]. In 2019, the numbers 15, 21, and 35 were factored using 

a version of Shor’s algorithm on a 6-bit IBM quantum processor [22]. This demonstration used one qubit 

in what is called the control register. This meant the qubit had to be recycled for each measurement. 

Two years later in 2021, an IBM quantum processor was used again to find the prime factors of 21. The 

number of qubits in this demonstration was reduced to 5. The circuit contained 2 qubits in the work register 

and 3 qubits in the control register. A sub-processor configuration of IBM’s 7 qubit, ibmq-casablanca, and 

21 qubit, ibmq-toronto were used. Because of the high resource of Shor’s algorithm, the researchers needed 

to implement a pentagonal circuit mapping that was not available with any single quantum processor. The 

pentagonal circuit arrangement allowed for more connections between qubits which helped to reduce the 

number of gates needed to perform the algorithm. In the demonstration, the initial guess was chosen to be 

4. For the quantum part of the algorithm, measurements showed probability peaks at 3 and 5. Then using a 

classical algorithm to perform further calculations, the order was found to be 3. Plugging this into the final 

step, gcd(4
3

2 ± 1,  21), gives 3 and 7 which are the prime factors of 21. 
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6 Proposed Attacks on Quantum Key Distribution 

As discussed previously, quantum computers will not only be a powerful tool for breaking encryption. 

Some of the same principles that make quantum computers so dangerous also allow them to implement 

powerful security measures as with Quantum Key Distribution. Theoretically, QKD methods should be 

unbreakable. However, there are imperfections in the generation and measurement of photons, leaving 

space for an attack to be carried out [18].  

One such attack was proposed in 2018 against BB84 QKD protocols [18]. It is known as the photon number 

splitting attack. A basic requirement of BB84 is sending a photon between two parties, Alice and Bob. 

Typically, if this photon was intercepted and measured by a third eavesdropping party, their presence would 

be easily recognizable due to the no-cloning theory. However, generating a single photon can be very 

difficult. In many cases, when Bob generates a photon, multiple identical photons are generated and sent to 

Alice. This would allow someone to capture and measure one of the “extra” photons without giving any 

sign that they are present.  

In 2015, four attacks against QKD protocols were proposed [19]. The first, a Man in the Middle Attack 

(MITM), relies on Eve setting up her own equipment for measurement and generation in the communication 

channel. She would also need to have access to quantum memory. This MITM attack requires Eve to 

impersonate both Alice and Bob. In one QKD protocol, an initial set of messages is sent back and forth 

between Alice and Bob to form a key. The first message is generated by Alice using a particular basis state. 

Once Bob receives this message, he will need to choose a basis state for measurement. If he chooses the 

same state as Alice, the message is kept and used as part of the key. If the state does not match, the message 

is discarded. This is repeated until Alice and Bob have enough matching messages to form a key. If Eve is 

able to intercept these messages, she could effectively impersonate Alice and Bob. She would intercept 

Alice’s first message and store it in her quantum memory. She could then use the next message sent by 

Alice to compare with her memory and find collisions in the hashing. This would lead to Eve obtaining an 

identical copy of Alice’s raw key. Eventually, if Eve uses the same protocol as Alice and Bob, all three 

parties will end up generating the same “private” key. If this key is then used as part of the generation of 

subsequent keys, then it will be even easier for Eve to obtain these keys. 

 

7 Conclusion 

Based on our research, quantum cryptography is an emerging field of study with great potential. However, 

it is not currently an effective countermeasure to quantum computing's nullification of some traditional 
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cryptography algorithms. Namely, there needs to be more research and development into long-distance 

quantum transmission because currently these systems cannot work across far distances on terrestrial Earth. 

It is likely that quantum cryptography will be the superior method of resisting attacks in the future, but it is 

currently quantum-resistant traditional cryptography that is the best method to use. This was concluded 

because quantum cryptography is in its infancy and has many fundamental issues that likely will not be 

solved for a long time, and with quantum computing approaching at a rapid pace, we need to be able to 

protect our data in the meantime, which quantum-resistant traditional cryptography is capable of. On top of 

the fundamental issues, quantum cryptography requires highly specialized equipment to operate while 

quantum-resistant traditional cryptography operates on current computers, so there is not a high cost 

associated with shifting to quantum-resistant as the standard. Even though quantum-resistant traditional 

cryptography is already functional, further research needs to be done to optimize and develop new 

algorithms. By developing attacks against them, researchers can modify the algorithms to ensure maximum 

security. 

 

References 

[1] Milanov, Evgeny. The RSA Algorithm, University of Washington, 3 June 2009, 

sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf. 

[2] Bernstein, Daniel J., and Tanja Lange. “Post-Quantum Cryptography.” Nature News, Nature Publishing 

Group, 14 Sept. 2017, www.nature.com/articles/nature23461. 

[3] Rivest, Ron, et al. “A Method for Obtaining Digital Signatures and Public Key Cryptosystems.” ACM 

Digital Library, Feb. 1978, dl.acm.org/doi/pdf/10.1145/359340.359342. 

[4] Shor, Peter. “Algorithms for quantum computation: Discrete logarithms and factoring.” Proceedings 

35th Annual Symposium on Foundations of Computer Science, Nov. 1994, 

https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/9508027. 

[5] “Science & Tech Spotlight: Securing Data for a Post-Quantum World.” U.S. GAO, 8 Mar. 2023, 

www.gao.gov/products/gao-23-

106559#:~:text=Cryptography%20protects%20information%20by%20transforming,break%20in%

20reasonable%20time%20frames. 

[6] Beauregard, Stephane. “Circuit for Shor’s Algorithm Using 2n+3 Qubits.” Quantum Information & 

Computation, Rinton Press, Incorporated, 1 Mar. 2003, dl.acm.org/doi/10.5555/2011517.2011525. 

[7] Kumar, Ajay, and Sunita Garhwal. “State-of-the-Art Survey of Quantum Cryptography - Archives of 

Computational Methods in Engineering.” SpringerLink, Springer Netherlands, 19 Apr. 2021, 

link.springer.com/article/10.1007/s11831-021-09561-2. 

http://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
http://www.nature.com/articles/nature23461
https://doi.org/https:/doi.org/10.48550/arXiv.quant-ph/9508027
http://www.gao.gov/products/gao-23-106559#:~:text=Cryptography%20protects%20information%20by%20transforming,break%20in%20reasonable%20time%20frames
http://www.gao.gov/products/gao-23-106559#:~:text=Cryptography%20protects%20information%20by%20transforming,break%20in%20reasonable%20time%20frames
http://www.gao.gov/products/gao-23-106559#:~:text=Cryptography%20protects%20information%20by%20transforming,break%20in%20reasonable%20time%20frames
http://dl.acm.org/doi/10.5555/2011517.2011525
http://link.springer.com/article/10.1007/s11831-021-09561-2


 15 

[8] “Cryptography in the Quantum Age.” NIST, 21 Mar. 2018, www.nist.gov/physics/introduction-new-

quantum-revolution/cryptography-quantum-

age#:~:text=The%20uncertainty%20principle%20indicates%20that,way%20that%20can%20be%2

0detected. 

[9] Yin, Juan, et al. “Entanglement-Based Secure Quantum Cryptography over 1,120 Kilometres.” Nature 

News, Nature Publishing Group, 15 June 2020, www.nature.com/articles/s41586-020-2401-y. 

[10] “NIST Announces First Four Quantum-Resistant Cryptographic Algorithms.” NIST, 7 July 2022, 

www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-

cryptographic-algorithms. 

[11] Avanzi, Roberto, et al. Crystals-Kyber Algorithm Specifications and Supporting Documentation, 4 

Aug. 2021, pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf. 

[12] “Scientists Make Seven-Bit Quantum Leap in Computer Research.” MIT News, 29 Mar. 2000, 

news.mit.edu/2000/quantum-0329. 

[13] Choi, Charles Q. “IBM Goes Big with 433-Qubit Osprey Chip.” IEEE Spectrum, IEEE Spectrum, 9 

Nov. 2022, spectrum.ieee.org/ibm-quantum-computer-osprey. 

[14] Choi, Charles Q. “IBM: Quantum Computers Are Already Doing Heavy Lifting.” IEEE Spectrum, 

IEEE Spectrum, 22 June 2023, spectrum.ieee.org/practical-quantum-computing-ibm. 

[15] Castelvecchi, Davide. “IBM Quantum Computer Passes Calculation Milestone.” Nature News, Nature 

Publishing Group, 14 June 2023, www.nature.com/articles/d41586-023-01965-3. 

[16] Wang, Shuang, et al. “Twin-Field Quantum Key Distribution over 830-Km Fibre.” Nature News, 

Nature Publishing Group, 17 Jan. 2022, www.nature.com/articles/s41566-021-00928-2. 

[17] Lucamarini, M., et al. “Overcoming the Rate–Distance Limit of Quantum Key Distribution without 

Quantum Repeaters.” Nature News, Nature Publishing Group, 2 May 2018, 

www.nature.com/articles/s41586-018-0066-6. 

[18] Zhao, Yusheng. “Development of Quantum Key Distribution and Attacks Against It.” IopScience, IOP 

Publishing Ltd, 2018, iopscience.iop.org/article/10.1088/1742-6596/1087/4/042028. 

[19] Pacher, Christoph, et al. “Attacks on Quantum Key Distribution Protocols That Employ Non-Its 

Authentication.” arXiv.Org, 31 Aug. 2015, arxiv.org/abs/1209.0365. 

[20] Vandersypen, Lieven M. K., et al. “Experimental Realization of Shor’s Quantum Factoring Algorithm 

Using Nuclear Magnetic Resonance.” Nature News, Nature Publishing Group, 2001, 

www.nature.com/articles/414883a. 

[21] Skosana, Unathi, and Mark Tame. “Demonstration of Shor’s Factoring Algorithm for N = 21 on IBM 

Quantum processors.” Nature, 16 Aug. 2021, www.nature.com/articles/s41598-021-95973-w.pdf. 

[22] Amico, Mirko, et al. “Experimental Study of Shor’s Factoring Algorithm Using the IBM Q 

Experience.” Physical Review A, American Physical Society, 8 July 2019, 

doi.org/10.1103/PhysRevA.100.012305. 

http://www.nist.gov/physics/introduction-new-quantum-revolution/cryptography-quantum-age#:~:text=The%20uncertainty%20principle%20indicates%20that,way%20that%20can%20be%20detected
http://www.nist.gov/physics/introduction-new-quantum-revolution/cryptography-quantum-age#:~:text=The%20uncertainty%20principle%20indicates%20that,way%20that%20can%20be%20detected
http://www.nist.gov/physics/introduction-new-quantum-revolution/cryptography-quantum-age#:~:text=The%20uncertainty%20principle%20indicates%20that,way%20that%20can%20be%20detected
http://www.nist.gov/physics/introduction-new-quantum-revolution/cryptography-quantum-age#:~:text=The%20uncertainty%20principle%20indicates%20that,way%20that%20can%20be%20detected
http://www.nature.com/articles/s41586-020-2401-y
http://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
http://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
http://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf.
http://news.mit.edu/2000/quantum-0329
http://spectrum.ieee.org/ibm-quantum-computer-osprey
http://spectrum.ieee.org/practical-quantum-computing-ibm
http://www.nature.com/articles/d41586-023-01965-3
http://www.nature.com/articles/414883a
http://www.nature.com/articles/s41598-021-95973-w.pdf


 16 

[23] Zhao-Chen Duan, Jin-Peng Li, Jian Qin, Ying Yu, Yong-Heng Huo, Sven Höfling, Chao-Yang Lu, 

Nai-Le Liu, Kai Chen, and Jian-Wei Pan, "Proof-of-principle demonstration of compiled 

Shor’salgorithm using a quantum dot single-photon source." Opt. Express 28, 18917-18930 (2020) 

https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-13-18917&id=432536 

[24] Beckman, David, et al. “Efficient Networks for Quantum Factoring.” Physical Review A, American 

Physical Society, 1 Aug. 1996, doi.org/10.1103/PhysRevA.54.1034. 

[25] “Announcing PQC Candidates to Be Standardized, plus Fourth Round Candidates.” NIST, 5 July 2022, 

csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4#fourth-round. 

[26] Bernstein, Daniel, et al. Classic Mceliece: Conservative Code-Based Cryptography, PQCRYPTO, 29 

June 2018, troll.iis.sinica.edu.tw/school+forum18/slides/McEliece.pdf. 

[27] Coretti, Sandro, et al. “A Constructive Perspective on Key Encapsulation.” SpringerLink, Springer 

Berlin Heidelberg, link.springer.com/chapter/10.1007/978-3-642-42001-6_16. 

[28] Singh, Harshdeep. “Code Based Cryptography: Classic McEliece.” arXiv.Org, 29 May 2020, 

arxiv.org/abs/1907.12754. 

[29] Aumasson, Jean-Philippe, et al. SPHINCS+. 10 June 2022, https://sphincs.org/data/sphincs+-r3.1-

specification.pdf. 

[30] Genêt, Aymeric. “On Protecting SPHINCS+ against Fault Attacks.” Cryptology ePrint Archive, IACR, 

19 Jan. 2023, eprint.iacr.org/2023/042. 

[31] Classic Mceliece: Conservative Code-Based Cryptography: Guide for Implementors, 23 Oct. 2022, 

classic.mceliece.org/mceliece-impl-20221023.pdf. 

[32] Kahn, David. The Codebreakers: A Comprehensive History of Secret Communication from Ancient 

Times to the Internet, Revised and Updated. Scribner. New York, New York. 1996. 

 

https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-13-18917&id=432536
http://doi.org/10.1103/PhysRevA.54.1034
http://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4#fourth-round
http://troll.iis.sinica.edu.tw/school+forum18/slides/McEliece.pdf
http://link.springer.com/chapter/10.1007/978-3-642-42001-6_16
http://arxiv.org/abs/1907.12754
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
http://eprint.iacr.org/2023/042
http://classic.mceliece.org/mceliece-impl-20221023.pdf

