
A Survey on Adversarial Machine Learning: Attacks, Defenses, Real-World Applications,
and Future Research Directions

Yan Qiao, Nimitha Bangalore Sathyanarayana, Chaowei Shi, Zefeng He, Tao Wang, Tao Hou→

Department of Computer Science and Engineering, University of North Texas, Denton, Texas, USA

Abstract

The rapid proliferation of machine learning (ML) systems across critical domains has heightened concerns about their susceptibility
to adversarial threats. This survey offers a comprehensive overview of adversarial machine learning, synthesizing a broad body of
research encompassing attack methodologies, defense strategies, and real-world applications. We present a systematic taxonomy of
adversarial threats spanning the ML lifecycle, including training-time attacks such as data poisoning and backdoor insertion, as well
as inference-time attacks such as evasion, model extraction, and privacy leakage. We examine a wide range of defense mechanisms,
including proactive approaches (e.g., adversarial training and input sanitization), detection-based techniques that leverage statistical
or behavioral signatures, and reactive strategies such as model patching and ensemble learning. We further discuss recent advances
in privacy-preserving machine learning, including differential privacy, federated learning, and secure aggregation. Through real-
world case studies in domains such as computer vision, natural language processing, autonomous systems, and healthcare, we
highlight persistent vulnerabilities and practical challenges. Finally, we outline critical open problems and promising directions for
future research. This work consolidates current understanding and serves as a foundational reference for enhancing the security and
robustness of machine learning systems.
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1. Introduction

In recent years, machine learning (ML) has demonstrated re-
markable success across a broad spectrum of domains, rang-
ing from computer vision and natural language processing to
healthcare diagnostics and autonomous systems. These ad-
vancements have led to the widespread deployment of ML-
based systems in both consumer-facing applications and critical
infrastructure. As these technologies become more deeply em-
bedded in essential services and high-stakes decision-making
processes, ensuring their reliability, robustness, and security has
become an urgent concern [1].

Despite their impressive capabilities, ML models, particu-
larly deep neural networks, exhibit unexpected vulnerabilities
to small, carefully crafted input perturbations known as ad-
versarial examples. These perturbations can induce misclas-
sification or incorrect predictions with high confidence, even
though they are often imperceptible to human observers [2].
This phenomenon exposes a fundamental fragility in the de-
sign and training of modern ML systems and has motivated the
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emergence and rapid growth of the research field known as ad-
versarial machine learning (AML).

Adversarial machine learning lies at the intersection of ma-
chine learning and security, aiming to understand, exploit, and
defend against the inherent weaknesses of ML models [3].
Since the seminal discovery by Szegedy et al. [1], the field has
experienced an explosion of research, exploring not only the
generation of adversarial inputs but also the broader security
implications of deploying ML models in adversarial environ-
ments. Adversarial threats are no longer theoretical curiosi-
ties; they pose real risks in practical applications. For exam-
ple, adversarial perturbations can cause autonomous vehicles
to misread traffic signs [4], mislead diagnostic tools in medical
imaging [5], or allow fraud detection systems in finance to be
evaded [6].

Unlike conventional software vulnerabilities, which tend to
be discrete and patchable through code fixes, the vulnerabilities
in ML systems are often systemic and stem from the underly-
ing statistical nature of model training and inference. The core
tension between accuracy and robustness makes it difficult to
design models that generalize well on natural data while also
resisting adversarial manipulation. Additionally, the high di-
mensionality of input spaces in deep learning models provides
an extensive attack surface. Small perturbations in these spaces
can yield disproportionately large effects on model predictions,



a property that adversaries routinely exploit.
Further complicating the defenses is the inherently asymmet-

ric nature of adversarial scenarios. Attackers only need to find
one successful vector of attack, while defenders must antici-
pate and mitigate a wide range of potential strategies. This
asymmetry is particularly pronounced in black-box settings,
where the adversary lacks access to model internals but can
still launch successful attacks via transferability or gradient-
free methods [7]. The lack of transparency in many produc-
tion models further hinders effective monitoring, auditing, and
verification of security guarantees.

Adversarial machine learning is inherently dynamic and ad-
versarially co-evolving, with new defenses continually prompt-
ing stronger attacks and rendering earlier solutions obsolete. At
the same time, modern machine learning systems are becom-
ing increasingly complex, incorporating multi-domain, multi-
modal, and adaptive architectures that expand the adversarial
attack surface. Recent advances in multi-domain generative
modeling and multimodal learning for safety-critical applica-
tions illustrate this trend [8, 9, 10]. These developments have
also motivated robustness-aware approaches that explicitly in-
tegrate adversarial considerations into model design and train-
ing, including recent adversarially informed learning frame-
works and architectures [11, 12]. Moreover, adversarial threats
now extend beyond simple evasion to include data poisoning,
backdoor insertion, model extraction, and membership infer-
ence across different stages of the ML lifecycle.

As research matures, attention is increasingly shifting toward
more robust, generalizable, and theoretically grounded defense
mechanisms. Techniques such as adversarial training, input
preprocessing, model certification, randomized smoothing, and
ensemble defenses have shown promise. In parallel, privacy-
preserving approaches such as differential privacy, federated
learning, and secure aggregation are being adopted to mitigate
information leakage and support secure collaborative learning
environments [13, 14].

1.1. Scope of the Survey

In this survey, we take a comprehensive look at adversarial
machine learning across the full ML pipeline, from attacks to
defenses. We focus on three primary dimensions. First, we ex-
amine the full attack surface of machine learning systems, such
as training-time poisoning attacks and inference-time evasion
attacks. We also provide detailed analysis of privacy attacks,
model extraction techniques, and other emerging threat vectors
that target the unique structural and statistical vulnerabilities
of ML models. Second, we systematically categorize defense
mechanisms, covering preventive, detection, and reactive tech-
niques, as well as privacy-preserving methods. We place par-
ticular emphasis on the theoretical underpinnings and practi-
cal viability of these approaches in real-world settings. Third,
we explore how adversarial machine learning manifests in dif-
ferent application domains, including variations in attack and
defense techniques that emerge from domain-specific charac-
teristics and deployment architectures.

1.2. Survey Methodology
We adopt a systematic methodology to capture the breadth

and depth of adversarial machine learning research. Our re-
view encompasses 90 recent papers published in top-tier con-
ferences and journals, including NeurIPS, ICML, ICLR, CCS,
USENIX Security, NDSS, and IEEE S&P. From this corpus,
we identified the seminal works that form the intellectual back-
bone of the field. These papers were selected based on their
contributions to foundational concepts, novel attack or defense
mechanisms, theoretical frameworks for adversarial robustness,
demonstrated impact in real-world scenarios, and indicators of
promising future research directions.

1.3. Paper Organization
The remainder of this survey is organized to support both

comprehensive study and targeted exploration. Section 2 intro-
duces foundational concepts and presents a taxonomy of adver-
sarial machine learning. Sections 3 and 4 examine attacks dur-
ing training and inference, respectively, detailing their method-
ologies and implications. Section 5 reviews a wide spectrum
of defense strategies, including preventive, detection, reactive,
and privacy-preserving techniques. In Section 6, we explore
real-world applications and case studies across domains such as
healthcare, autonomous systems, and cybersecurity. Section 8
outlines persistent challenges and unresolved issues, while Sec-
tion 9 highlights promising directions for future research. Fi-
nally, Section 10 synthesizes key insights and reflects on the
path forward. Each section is crafted to be self-contained while
collectively contributing to a comprehensive understanding of
adversarial machine learning.

2. Preliminaries and Taxonomy

Adversarial machine learning explores the vulnerabilities of
learning algorithms under deliberate manipulation. Before ex-
ploring specific attacks and defenses, it is essential to under-
stand the foundational concepts that define the AML landscape.
This section provides a brief overview of machine learning prin-
ciples, introduces the threat models commonly considered in
adversarial settings, and classifies adversarial attacks and de-
fenses according to their timing, goals, and knowledge assump-
tions. The taxonomy presented here serves as a conceptual
framework for the remainder of the survey.

2.1. Machine Learning Pipeline
The machine learning pipeline comprises several stages, each

of which introduces unique security vulnerabilities. Under-
standing the pipeline enables a systematic assessment of poten-
tial attack vectors [3]. As illustrated in Fig. 1, machine learning
systems follow a multi-stage pipeline, from data collection to
deployment. Adversarial attacks can target different stages of
this pipeline, leading to distinct threat models and security im-
plications.

The pipeline begins with data collection and preprocessing,
where raw data is gathered and transformed into a format suit-
able for model training. This stage is particularly susceptible
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Figure 1: Overview of the machine learning pipeline, illustrating the main
stages from data collection and preprocessing to model training, validation and
testing, and deployment. Each stage may represent a potential attack surface
for adversarial manipulation.

to data poisoning attacks [15], in which adversaries manipulate
training data by injecting malicious samples or modifying ex-
isting ones to degrade model performance or introduce targeted
behaviors. For instance, slight alterations to training images in
computer vision applications can lead to systematic misclassi-
fications.

Next is the model training phase, where model architec-
ture, hyperparameters, and optimization algorithms are se-
lected. This stage is vulnerable to attacks such as backdoor
insertions and gradient manipulation. The widespread adop-
tion of deep learning frameworks like PyTorch and TensorFlow,
while simplifying training, has inadvertently expanded the at-
tack surface by exposing internal training procedures to manip-
ulation [1].

The validation and testing phase assesses model perfor-
mance on held-out data. Adversaries may construct validation
sets that obscure model flaws or manipulate evaluation metrics.
Attack samples may appear benign during validation but de-
grade performance under specific conditions, undermining the
model’s reliability.

Finally, during the deployment phase, models are integrated
into real-world systems. This phase raises concerns about
model serving infrastructure, exposed APIs, and interaction
with external components. Cloud-based deployment increases
accessibility but also expands the attack surface through shared
infrastructure and network exposure [2].

2.2. Threat Model Framework

Understanding adversarial machine learning requires a clear
definition of the adversary’s capabilities, goals, and access lev-
els. The threat model framework provides a structured way
to characterize these elements, guiding the development and
evaluation of both attacks and defenses. In this subsection,
we outline the key dimensions of the threat model including
the attacker’s knowledge of the model (white-box, black-box,
or gray-box), and the attack objective (e.g., confidentiality at-
tacks, integrity attacks, or availability attacks). Establishing this
framework ensures consistency and clarity in analyzing adver-
sarial behaviors throughout the survey.

2.2.1. Adversary’s Knowledge
Threat models are defined by the adversary’s level of knowl-

edge:

• White-box attacks assume complete access to the model,
including architecture, parameters, and training data.
These attacks, such as those introduced by Szegedy et
al. [1], often employ gradient-based methods to craft
highly effective adversarial examples.

• Gray-box attacks assume partial knowledge, such as the
model architecture or a surrogate trained on a similar
dataset.

• Black-box attacks assume only input-output access, typi-
cally through an API. Despite limited access, techniques
like query-based optimization [7] allow adversaries to
mount effective attacks.

2.2.2. Adversary’s Goals
The objectives of adversarial attacks can be broadly classified

into:

• Confidentiality attacks aim to extract sensitive informa-
tion from the model or its training data.

• Integrity attacks seek targeted misclassification while
leaving other predictions unaffected. For instance, an au-
tonomous vehicle misclassifying stop signs as speed limit
signs can have catastrophic consequences [4].

• Availability attacks degrade model performance globally,
rendering the system unusable or unreliable.

2.3. Evaluation Metrics
Evaluation metrics in adversarial machine learning serve as

critical tools to measure the effectiveness of attacks and the ro-
bustness of defense mechanisms. These metrics fall into three
primary categories: (i) attack success, (ii) degradation of model
performance, and (iii) computational efficiency. Table 1 sum-
marizes the most commonly used metrics in each category, pro-
viding a basis for consistent benchmarking across studies.

These metrics guide both attack development and defense
design. Targeted and untargeted success rates capture the pre-
cision and aggressiveness of adversarial examples. Accuracy
drop and robustness bounds help assess generalizability and
worst-case behavior, while query and time complexity are espe-
cially relevant in real-world deployments where computational
cost and API restrictions are present. Certified defenses typi-
cally report formal robustness bounds, while empirical metrics
such as CLEVER [18] and AutoAttack [21] provide rigorous
and reproducible evaluations under standardized threat models.

2.4. Datasets and Benchmarks
Robust and reproducible evaluation in adversarial machine

learning heavily relies on standardized datasets and bench-
mark frameworks. These datasets enable comparative analy-
sis of attack and defense strategies under consistent settings.

3



Table 1: Evaluation Metrics in Adversarial Machine Learning

Category Metric Description and Use

Attack Effectiveness
Targeted Attack Success Rate (ASR) [16] Percentage of adversarial inputs that cause the model to output a specific

incorrect class.
Untargeted ASR [2] Measures the percentage of adversarial inputs that cause any incorrect

classification.

Model Performance
Accuracy Drop [17] Difference in clean test accuracy before and after attack exposure. Indi-

cates global robustness loss.
Robustness Bounds [18, 19] Measures provable or empirical guarantees under bounded perturba-

tions. Includes CLEVER scores and certified defenses.

Efficiency
Query Efficiency [20] Number of queries to the target model needed to craft a successful ad-

versarial example (relevant in black-box attacks).
Time Complexity [21] Computation time to craft adversarial samples (can include both offline

and online phases).

Table 2: Representative Datasets and Benchmarks for Adversarial Machine Learning

Domain Name Description and Use

Image Classification MNIST [22] Handwritten digits (28x28). Used for evaluating simple perturbation-based attacks.
CIFAR-10/100 [23] Color images (32x32). Popular for evaluating transferability and defenses.
ImageNet [24] Large-scale dataset with 1000 classes. Used for high-complexity attacks and defenses.

NLP SQuAD [25] Question answering benchmark; adversarially modified queries test model understanding.
GLUE [26] NLP benchmark covering sentiment, entailment, and similarity.

Network Security NSL-KDD [27] Benchmark for intrusion detection; used for adversarial evasion in anomaly detection.
UNSW-NB15 [28] Modern attack traffic and normal activities for network intrusion research.

Malware Analysis EMBER [29] Portable executable (PE) files with labeled malware/benign examples.
Microsoft Malware Challenge [30] Dataset for static malware classification tasks.

Face Recognition LFW [31] Face verification benchmark with aligned image pairs.
CelebA [32] Large-scale dataset with facial attributes; used for poisoning and attribute manipulation.

Benchmarks RobustBench [33] Leaderboard for adversarial robustness across standardized threat models.
AutoAttack [21] Parameter-free ensemble of attacks for robust evaluation.
CLEVER [18] Metric-based framework for estimating robustness bounds.

Table 2 categorizes commonly used datasets and robustness
benchmarks by domain, alongside their typical use cases and
relevance in adversarial research.

These datasets and benchmarks collectively facilitate the
development, evaluation, and comparison of robust machine
learning models. Vision-based benchmarks such as ImageNet
and CIFAR serve as primary testbeds for attack generalization
and certified defenses. NLP datasets like SQuAD and GLUE
are increasingly used to study textual perturbations and cross-
modal vulnerabilities. Meanwhile, domain-specific datasets
from security (e.g., EMBER, NSL-KDD) and privacy-sensitive
applications help expose real-world adversarial concerns and
drive practical defense innovation.

2.5. Adversarial Examples and Their Generations

Adversarial examples constitute a fundamental security
threat to machine learning systems by enabling attackers to
intentionally manipulate model predictions through carefully
crafted input perturbations. Unlike random noise or benign
input variations, adversarial perturbations are optimized to ex-
ploit vulnerabilities in a model’s learned decision boundaries,
often remaining imperceptible to human observers while induc-
ing incorrect or highly confident mispredictions. As a result,

adversarial examples undermine the reliability, safety, and trust-
worthiness of machine learning models deployed in security-
and safety-critical applications, including autonomous driving,
medical diagnosis, fraud detection, and intrusion detection sys-
tems.

From a threat-model perspective, adversarial examples exac-
erbate the inherent asymmetry between attackers and defenders.
Attackers only need to identify a single effective perturbation
to compromise model behavior, whereas defenders must antic-
ipate and defend against a wide range of possible attack strate-
gies, access assumptions, and perturbation constraints. More-
over, adversarial examples can be generated under varying lev-
els of attacker knowledge, ranging from full access to model
parameters and gradients (white-box setting) to highly restric-
tive scenarios where the attacker can only query model outputs
(black-box setting). This flexibility significantly lowers the bar-
rier to real-world exploitation.

At a high level, the generation of adversarial examples is
commonly formulated as an optimization problem that seeks
to maximize the model’s prediction error while constraining
the perturbation magnitude. Given an input–label pair (x, y),
a trained model fω with parameters ω, and a loss functionL(·, ·),
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Figure 2: Taxonomy of adversarial attacks on machine learning systems.

adversarial example generation can be expressed as:

x↑ = arg max
x↑↓Bε (x)

L( fω(x↑), y), (1)

where Bε(x) denotes a constraint set that limits the perturba-
tion applied to the original input, typically defined using an
ϑp norm. This formulation captures the core objective shared
by many adversarial attack methods, regardless of their specific
implementation.

Based on attacker capabilities and optimization strategies,
adversarial example generation methods can be broadly catego-
rized into several classes. In white-box settings, gradient-based
attacks directly exploit the differentiability of deep neural net-
works to efficiently compute perturbations using loss gradients.
Iterative variants further refine adversarial inputs through re-
peated optimization steps, yielding stronger and more transfer-
able attacks. Optimization-based methods extend this approach
by explicitly balancing misclassification objectives with pertur-
bation minimization, often producing highly effective adversar-
ial examples with small distortion.

In black-box scenarios, where model gradients and param-
eters are inaccessible, adversarial examples can still be gener-
ated through query-based or decision-based methods. These ap-
proaches rely on probing model outputs to estimate gradients,
approximate decision boundaries, or iteratively adjust perturba-
tions based on feedback signals. In addition, the transferabil-
ity property of adversarial examples allows attackers to craft
adversarial inputs using surrogate models and successfully ap-
ply them to unseen target models, highlighting the existence of
shared vulnerabilities across different architectures and training
procedures.

Overall, the diversity of adversarial example generation tech-
niques demonstrates that adversarial threats are not confined to
specific models, tasks, or access assumptions, but instead reflect
a systemic vulnerability in modern machine learning systems.
Understanding both the security implications of adversarial ex-
amples and the fundamental mechanisms underlying their gen-
eration is essential for evaluating model robustness and motivat-
ing the attack and defense strategies discussed in the remainder
of this survey.

2.6. Taxonomy of Adversarial Attacks

Adversarial attacks on machine learning systems are com-
monly classified by the stage of the learning pipeline they tar-
get. These stages include the training phase and the infer-
ence phase. Such categorization is essential for understand-
ing the attack surface and developing appropriate countermea-
sures. Training-time attacks aim to compromise the integrity of
a model during its learning phase, embedding persistent vulner-
abilities that can be exploited after deployment.

Figure 2 presents a structured taxonomy of adversarial at-
tacks against machine learning models, categorized by the stage
of the ML pipeline they target. Training-time attacks are
grouped into data poisoning, data manipulation, and model ma-
nipulation, reflecting how adversaries can corrupt the learning
process. Inference-time attacks include evasion attacks, privacy
attacks (e.g., membership inference and model inversion), and
model extraction threats such as functionality stealing. Each
category is further subdivided into representative attack strate-
gies to highlight the breadth of adversarial techniques that com-
promise model performance, confidentiality, and trustworthi-
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Table 3: Taxonomy of Training-Time Attacks on Machine Learning Systems

Attack Category Type Description

Data Poisoning
Label Flipping [34, 35, 36] Training labels are flipped without changing input features, shifting decision

boundaries and degrading model performance.
Clean-Label Poisoning [37] Crafted benign-looking inputs with correct labels mislead the model into incor-

rect inference behavior.
Backdoor Attacks [38, 39] Trigger patterns are embedded in training data to elicit malicious behavior under

specific conditions.

Data Manipulation Feature Manipulation [40, 41, 35] Specific input features are altered to bias the learning process while preserving
labels and realism.

Training Data Injection [42] Adversarial samples with natural appearance are injected to shape model behav-
ior undetectably.

Model Manipulation Weight Manipulation [43, 44] Model weights are directly altered to embed backdoors or logic bombs that per-
sist through fine-tuning.

Architecture Tampering [45, 46, 47] Structural components such as layers or skip connections are modified to intro-
duce hidden vulnerabilities.

ness. This taxonomy provides a conceptual framework for an-
alyzing threat vectors and guiding the development of corre-
sponding defense strategies.

3. Training-Time Attacks

As shown in Figure 3, the figure provides an intuitive illus-
tration of how adversarial attacks can be mounted at different
stages of the machine learning lifecycle, encompassing both
training-time and inference-time threat models. In this section,
we first discuss training-time attacks, followed by a detailed ex-
amination of inference-time attacks in the next section.

Figure 3: Examples of adversarial attacks targeting different stages of the ma-
chine learning pipeline, including training-time data poisoning and inference-
time model inversion and model extraction attacks.

Training-time attacks pose a particularly insidious threat to
machine learning systems. By tampering with the training data,
altering the learning process, or modifying the model architec-
ture, adversaries can embed malicious behaviors that are dif-
ficult to detect through standard validation techniques. These
attacks exploit the inherent learning dynamics of the model
by shifting decision boundaries, corrupting internal representa-
tions, or manipulating optimization pathways. Once deployed,

the compromised model typically performs as expected on be-
nign inputs but produces erroneous or malicious outputs when
exposed to carefully crafted trigger conditions introduced by
the attacker. As shown in Table 3, we detail several types of
training-time attacks, categorized broadly into data poisoning,
data manipulation, and model manipulation.

3.1. Data Poisoning Attacks

Data poisoning attacks aim to corrupt the training process by
injecting malicious examples into the dataset. These attacks can
degrade model performance globally or embed targeted back-
doors that trigger incorrect behavior under specific conditions.
Poisoning techniques include label flipping, feature manipula-
tion, and clean-label poisoning, each exploiting different as-
pects of the learning algorithm. Such attacks are particularly
dangerous in open or crowdsourced training pipelines, where
data curation is minimal.

3.1.1. Label Flipping
Label flipping is among the most basic and effective poison-

ing techniques. The adversary alters the labels of existing train-
ing samples without modifying their features. These manipu-
lated samples are indistinguishable from legitimate data to hu-
man reviewers or standard validation procedures. This subtlety
makes detection challenging.

Label flipping attacks distort the model’s decision bound-
aries. In binary classification, flipping labels near the boundary
can significantly shift the learned parameters. Xiao et al. [34]
demonstrated that altering just 20% of labels in sensitive re-
gions can lead to a 35% reduction in classification accuracy
on clean test data. More sophisticated variants [35, 36] apply
influence function analysis and gradient-based optimization to
locate high-impact points for label alteration. Auxiliary mod-
els also help identify optimal flipping targets, enhancing both
stealth and efficacy.

Label flipping can be modeled as constructing a poisoned
dataset D↑ by changing the labels of a selected subset of train-
ing points while keeping their inputs unchanged. Let D =
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{(xi, yi)}Ni=1 and let S ↔ {1, . . . ,N} denote the indices chosen
for poisoning. The poisoned dataset is

D↑ = {(xi, ỹi)}Ni=1, ỹi =



ϖ(yi), i ↓ S,
yi, i ! S, (2)

where ϖ(·) denotes a label-mapping rule (e.g., random flipping
or targeted flipping). Training on D↑ yields parameters ω↑ =
arg minω E(x,y)↗D↑ [L( fω(x), y)], illustrating how label corruption
directly perturbs the empirical risk being minimized and can
shift the learned decision boundary.

3.1.2. Clean-Label Poisoning
Clean-label poisoning attacks insert adversarial samples into

the training dataset with correct labels, making them especially
deceptive. These inputs are crafted to appear visually or se-
mantically benign, thus evading detection, but are optimized to
induce incorrect predictions when specific triggers or features
are encountered at inference time.

This approach is particularly dangerous in transfer learning
scenarios, where pretrained models are fine-tuned on small, po-
tentially vulnerable datasets. For example, in computer vision,
adversaries might subtly modify images of dogs to resemble
cats while keeping the label "dog," thereby manipulating fea-
ture extraction layers. Shafahi et al. [37] demonstrated that
poisoning just 50 out of 50,000 training samples in CIFAR-
10 could induce targeted misclassification in over 60% of test
cases, without affecting clean test accuracy, highlighting the
stealth and potency of this attack vector.

Clean-label poisoning typically aims to induce a targeted er-
ror on a specific test-time target input xt, while keeping injected
samples correctly labeled. A common abstraction is to optimize
poison samples to maximize the loss on (xt, yt) after training:

max
Dadv
L( fω↑(D↘Dadv)(xt), yt

)
s.t. (x, y) ↓ Dadv ≃ y = yc, (3)

where ω↑(·) denotes the parameters obtained by training on the
poisoned dataset. This formulation highlights the core chal-
lenge of clean-label poisoning: the attacker must shape the
learned representation using seemingly benign, correctly la-
beled points, so that the target input is misclassified at inference
time without noticeably harming standard test accuracy.

3.1.3. Backdoor Attacks
Backdoor attacks embed hidden patterns (triggers) into the

model during training, enabling adversaries to induce mali-
cious behavior at inference time when the trigger is present. In
the absence of the trigger, the model behaves normally, which
makes these attacks highly stealthy and difficult to detect using
standard evaluation methods. This duality between clean and
triggered behavior poses a serious threat in real-world deploy-
ments.

The attack typically involves two phases: a poisoning phase,
where trigger-laden inputs are inserted into the training data
with attacker-specified labels, and an activation phase, where
the model is queried with inputs containing the trigger. Trig-
gers can take various forms, including visual artifacts (e.g.,

small stickers on traffic signs), specific keywords in natural lan-
guage text, or imperceptible frequency patterns in audio. Gu et
al. [38] demonstrated that simple pixel-level triggers can create
highly effective backdoors in image classifiers. Liu et al. [39]
further showed that even internal neuron activations can be ma-
nipulated to embed Trojan behavior. Notably, backdoors can
survive common model modifications such as pruning, quan-
tization, and fine-tuning, highlighting the need for specialized
detection and mitigation strategies.

A backdoor attack introduces a trigger transformation T (·)
(e.g., a small patch, keyword, or pattern) such that inputs con-
taining the trigger are mapped to an attacker-chosen target label
yb. Training can be viewed as minimizing a mixture of clean
and backdoor objectives:

min
ω

(1 ⇐ ϱ)E(x,y)↗D
[L( fω(x), y)

]
+ ϱE(x,y)↗D

[L( fω(T (x)), yb)
]
,

(4)
where ϱ is the poisoning ratio. After training, the attacker ex-
pects fω(x) ⇒ y for benign inputs, but fω(T (x)) ⇒ yb when the
trigger is present, capturing the dual behavior that makes back-
doors difficult to detect through standard evaluation.

3.2. Data Manipulation

Data manipulation attacks compromise the integrity of the
training dataset by injecting or modifying samples to influence
the model’s behavior. Unlike label flipping, these attacks alter
the input features while preserving labels to remain undetected.
Feature perturbations are often subtle and optimized to exploit
model inductive biases, leading to systematic errors under tar-
geted conditions. These attacks are particularly effective in set-
tings where data collection is distributed or weakly supervised.

3.2.1. Feature Manipulation
Feature manipulation attacks aim to alter specific attributes

of the training data while preserving the associated labels. Un-
like label flipping or backdoor attacks, the adversary intro-
duces subtle changes to input features, which can distort the
model’s learning process and induce misclassifications in tar-
geted regions of the input space. These attacks are particularly
potent when the adversary possesses partial knowledge of the
model’s architecture, preprocessing pipeline, or feature extrac-
tion mechanisms.

Zhang et al. [40] demonstrated that strategically manipulated
features could cause trained models to systematically fail under
specific conditions, even when standard training metrics indi-
cate normal behavior. More recent techniques such as Witches’
Brew [41] and MetaPoison [35] apply gradient-based optimiza-
tion to craft poison instances that remain visually or seman-
tically indistinguishable from clean data. These modern ap-
proaches enhance stealth by ensuring that the manipulated fea-
tures lie within the natural data manifold and are optimized to
evade detection during manual inspection or automated valida-
tion. Feature manipulation poses a unique threat in domains
like computer vision and natural language processing, where
high-dimensional data and complex preprocessing pipelines of-
fer rich opportunities for subtle but effective attack vectors.
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Feature manipulation can be modeled as crafting small per-
turbations ςi to selected training inputs while preserving labels:

x↑i = xi + ςi, ⇑ςi⇑p ⇓ ε, y↑i = yi, (5)

where the perturbations are optimized so that training on
{(x↑i , yi)} biases the learned model toward attacker-desired er-
rors, while keeping poisoned samples visually or semantically
plausible.

3.2.2. Training Data Injection
Training data injection refers to the process of introducing

maliciously crafted examples into the training dataset to subtly
manipulate the model’s behavior. Unlike more overt poison-
ing techniques, such as label flipping or disruptive feature cor-
ruption, this approach maintains the statistical coherence and
semantic plausibility of the training data, making detection sig-
nificantly more challenging.

Recent developments in generative modeling have enabled
attackers to create high-fidelity, task-aligned examples that can
be injected into the training corpus. These samples are carefully
constructed to influence model predictions in targeted ways
without degrading overall performance. For example, in nat-
ural language processing (NLP), attackers can introduce syn-
tactically and semantically valid sentences that encode hidden
biases or trigger behaviors. Turner et al. [42] demonstrated that
injecting as little as 0.1% of such examples into the training set
can lead to the emergence of persistent and exploitable model
vulnerabilities, all while maintaining high test accuracy on stan-
dard benchmark datasets. Training data injection thus poses a
potent threat, especially in large-scale data collection scenarios
where manual curation is impractical.

3.3. Model Manipulation
Model manipulation attacks target the internal components or

training procedures of machine learning models to implant hid-
den behaviors or degrade performance. Unlike data-centric poi-
soning, these attacks may alter initialization schemes, introduce
malicious layers, or tamper with optimization routines. Their
stealthy nature allows compromised models to behave normally
during evaluation while exhibiting adversarial behaviors under
specific conditions.

3.3.1. Weight Manipulation
Weight manipulation attacks involve the direct alteration of

a model’s internal parameters, which are typically the learned
weights of neural networks, with the intent of embedding ma-
licious behavior. These attacks are particularly salient in dis-
tributed and federated learning environments, where the train-
ing process is decentralized and thus more susceptible to tam-
pering [43].

Such manipulations can be subtle, targeting only a small sub-
set of model weights while preserving performance on stan-
dard test cases. Nonetheless, these minimal changes can im-
plant backdoors, biases, or decision logic that persist through
downstream fine-tuning. This resilience makes them difficult to
detect using conventional validation methods. In some cases,

adversaries use optimization-based approaches to find mini-
mal weight adjustments that produce targeted misclassifica-
tions [44].

Weight manipulation can be abstracted as finding a small pa-
rameter perturbation ∆ω that preserves clean accuracy while en-
forcing a malicious behavior:

min
∆ω
⇑∆ω⇑ s.t. fω+∆ω(x) ⇒ fω(x) for x, fω+∆ω(xb) = yb, (6)

where (xb, yb) represents a trigger condition or targeted behav-
ior imposed by the attacker.

3.3.2. Architecture Tampering
Architecture tampering attacks involve the deliberate ma-

nipulation of a machine learning model’s structural design to
embed covert vulnerabilities. Instead of modifying the train-
ing data or parameters, these attacks alter the model’s topol-
ogy such as by inserting hidden pathways, modifying activation
functions, or restructuring residual connections. The changes
are engineered to preserve performance on standard evaluation
metrics while enabling malicious behavior under specific con-
ditions.

Recent research has demonstrated the feasibility of such at-
tacks. For instance, adversaries may implant logic bombs by
appending inactive sub-networks that activate only when spe-
cific trigger patterns are present [45]. Other techniques mod-
ify internal skip connections or reuse redundant branches to
achieve bifurcated behavior [46]. These manipulations are
especially insidious in settings involving neural architecture
search (NAS), where attackers can influence automated archi-
tecture generation pipelines to inject tampered designs [47].

Because architectural modifications often evade conventional
auditing methods focused on weights or training data, architec-
ture tampering represents an emergent and critical threat vec-
tor. Addressing this challenge will require model certification
techniques that analyze both the structure and functionality of
neural networks.

4. Inference-Time Attacks

Inference-time attacks target deployed machine learning
models during prediction rather than training. Unlike training-
phase attacks, these threats do not require access to the train-
ing data or process, making them significantly more practical
in real-world scenarios. As ML models are widely deployed in
critical applications like healthcare, finance, and autonomous
systems, these attacks pose serious privacy, safety, and reliabil-
ity concerns. Table 4 provides a taxonomy of the primary types
of inference-time attacks, which we detail in this section.

4.1. Evasion Attacks

Evasion attacks occur during the inference phase, where ad-
versaries craft carefully perturbed inputs to mislead the model
without altering its internal parameters. These attacks exploit
the model’s sensitivity to small, often imperceptible, changes
in input data, resulting in incorrect or manipulated predictions.
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Table 4: Taxonomy of Inference-Time Attacks on ML Systems

Category Subtype Description

Evasion Attacks
White-box [2, 17, 16] Use full model knowledge to compute adversarial perturbations that mislead predictions.
Black-box [48, 49, 20] Query-only attacks that estimate gradients or exploit decision boundaries to craft inputs.
Transfer-based [50, 51, 52] Leverage transferability of adversarial examples across different models.

Privacy Attacks Model Inversion [53, 54] Reconstruct training samples using output probabilities and gradients.
Membership Inference [55, 56] Infer if a particular input was part of a model’s training set.

Model Extraction
Architecture Stealing [57, 58] Recover the target model’s architectural design using timing and output analysis.
Parameter Stealing [59, 60, 61] Reconstruct model weights using gradient estimation or equation solving.
Functionality Stealing [62, 63] Imitate a model’s decision boundary via knowledge distillation or surrogate training.

Evasion techniques are categorized based on the adversary’s
knowledge: white-box attacks assume full access to the model’s
architecture and gradients, black-box attacks operate solely via
input-output queries, and transfer attacks leverage adversarial
examples generated on substitute models. Understanding these
categories is critical for designing robust and generalizable de-
fenses.

4.1.1. White-box Attacks
White-box attacks assume complete access to the model ar-

chitecture, parameters, and gradients. In this setting, adver-
saries can directly optimize perturbations with respect to the
model’s loss function to generate inputs that induce misclassi-
fication.

The Fast Gradient Sign Method (FGSM) [2] is one of the
earliest and most influential gradient-based attacks. It perturbs
an input x along the sign of the gradient of the loss function
J(ω, x, y) with respect to the input:

xadv = x + ε · sign(⇔xJ(ω, x, y))

where ε controls the perturbation magnitude. While computa-
tionally efficient, FGSM performs only a single gradient step,
which may lead to suboptimal perturbations and limited attack
success under tighter perturbation constraints.

To overcome this limitation, the Basic Iterative Method
(BIM) [64] and its generalization, Projected Gradient Descent
(PGD) [65], apply FGSM iteratively. BIM accumulates mul-
tiple small perturbations, refining adversarial strength while
maintaining imperceptibility. PGD extends this approach by in-
troducing projection back onto the ϑ↖-ball after each iteration:

xt+1
adv = Πx+S

(
xt

adv + ϱ · sign(⇔xJ(ω, xt
adv, y))

)

PGD is widely regarded as a universal first-order adversary and
serves as a benchmark for evaluating model robustness in many
defense studies.

Beyond gradient-sign attacks, optimization-based methods
such as the Carlini & Wagner (C&W) attack [16] reformulate
the adversarial generation process as a constrained optimization
problem that minimizes perturbation distortion while enforcing
misclassification. This method achieves high attack success and
produces perturbations that are often imperceptible to humans.

Several other seminal attacks contribute to the evolution of
white-box evasion research. The DeepFool algorithm [66] com-

putes minimal perturbations by iteratively linearizing the classi-
fier’s decision boundary, yielding efficient and nearly impercep-
tible adversarial examples. The Jacobian-based Saliency Map
Attack (JSMA) [67] instead leverages the model’s Jacobian to
identify input features most influential to the output class, selec-
tively modifying a few key pixels to induce misclassification.

Overall, these white-box attacks form the foundation of ad-
versarial research, illustrating both the diversity of optimiza-
tion objectives (e.g., norm minimization, saliency targeting, and
minimal perturbation) and the evolution from single-step to iter-
ative and optimization-based strategies. They continue to serve
as standard benchmarks for evaluating the robustness of mod-
ern deep learning models.

4.1.2. Black-box Attacks
In black-box settings the attacker lacks access to model

internals (architecture, parameters, or gradients) and must
rely solely on input–output queries to craft adversarial exam-
ples. Black-box attacks are typically classified by the type of
feedback available (score-based, decision-based) and by their
query strategy (gradient approximation, surrogate training, or
decision-boundary search).

Gradient-free gradient estimation. Zeroth-Order Optimization
(ZOO) [48] approximates gradients via finite differences:

φ f
φxi
⇒ f (x + hei) ⇐ f (x)

h
,

and uses these estimates to perform iterative optimization.
While effective, ZOO is computationally expensive and query-
intensive in high-dimensional spaces. Subsequent work
improves query efficiency by estimating gradients in low-
dimensional subspaces or using population-based estimators
such as Natural Evolution Strategies (NES) [20], which sample
perturbations from a distribution and average directional deriva-
tives to reduce the number of queries.

Decision-based and score-based attacks. Decision-based at-
tacks (e.g., the Boundary Attack [49]) operate when the model
only returns class labels. The Boundary Attack begins from
a known adversarial example and performs a random walk to-
ward the target input while maintaining the adversarial prop-
erty, making it effective in the label-only setting but often re-
quiring many queries. Score-based attacks exploit access to
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confidence or probability scores to guide perturbations more
efficiently than purely decision-based methods. Meanwhile,
the One-Pixel Attack [68] demonstrates that even a single-pixel
change, optimized via differential evolution, can fool deep neu-
ral networks, highlighting the extreme sensitivity of model de-
cision boundaries.

Surrogate (substitute) model and transfer approaches. An al-
ternative black-box strategy trains a surrogate (or substitute)
model to mimic the target’s input–output behavior and then
crafts white-box adversarial examples on the surrogate that
transfer to the target [7]. Transfer-based attacks are particularly
practical when query budgets are limited, although their success
depends on transferability between models and on how well the
surrogate approximates the target’s decision boundaries.

Query-efficiency and optimization heuristics. Practical black-
box attacks emphasize query efficiency. Techniques include (i)
estimating gradients in lower-dimensional bases, (ii) using ban-
dit or population-based optimizers (NES), and (iii) adopting si-
multaneous perturbation methods (which perturb multiple coor-
dinates at once) to reduce per-iteration queries. Attackers often
combine these tactics with input priors (e.g., image structure)
to further reduce query counts.

Practical considerations and defenses. Black-box attacks are
typically more query- and time-intensive than white-box at-
tacks, and their real-world feasibility depends on API rate lim-
its, detection mechanisms, and query costs. Defenses such as
output-limited APIs (returning only top-1 labels), rate limit-
ing, response randomization, and anomaly-based query detec-
tors are effective mitigations but must be balanced against util-
ity and usability requirements.

Overall, black-box methods broaden the threat model by
showing that even limited-feedback deployments are vulnera-
ble. They complement transfer and white-box attacks in ro-
bustness evaluations and motivate defenses that consider query-
based adversaries and practical deployment constraints.

4.1.3. Transfer Attacks
Transfer-based attacks exploit the empirical phenomenon

that adversarial examples crafted for one model (a surrogate
or substitute) often remain effective against other models, even
those with different architectures, random initializations, or
training datasets. Transferability enables practical black-box
attacks when direct access to the target model is unavailable,
and therefore it represents a serious threat to deployed systems.

A common approach to improve transferability is to stabilize
and diversify the optimization process used to craft perturba-
tions. The Momentum Iterative Method (MIM) [50] augments
iterative gradient updates with a momentum term to accumulate
gradient directions across steps:

gt+1 = µgt +
⇔xJ(ω, xt, y)
⇑⇔xJ(ω, xt, y)⇑1

, xt+1 = xt + ϱ · sign(gt+1),

where µ is the momentum factor and ϱ the step size. By
smoothing the update trajectory, MIM reduces oscillation and

produces perturbations that generalize better across models,
making it particularly effective in transfer-based black-box sce-
narios.

Another influential class is Universal Adversarial Perturba-
tions (UAPs) [51, 52], which seek a single input-agnostic per-
turbation ς that causes widespread misclassification:

Find ς such that f (x + ς) " f (x), ↙x ↓ X, and ⇑ς⇑p ⇓ ↼.

UAPs reveal that certain directions in high-dimensional input
space are broadly effective at altering model outputs, under-
scoring shared vulnerabilities across independently trained net-
works.

Several factors influence transferability, including model ar-
chitecture similarity, shared training data or preprocessing, in-
put representation, and the attack objective (targeted vs. un-
targeted). Empirically, perturbations crafted to target low-
frequency or semantically relevant features often transfer more
reliably than those that exploit high-frequency noise. Tech-
niques such as input transformation during attack generation
(e.g., random resizing, translation) and ensemble-based surro-
gate training also improve cross-model success by producing
perturbations that are robust to variation.

Defenses against transfer attacks typically aim to reduce
shared weaknesses across models. In robustness evaluations,
transfer attacks are a crucial component of a comprehensive
threat model because they capture realistic adversarial scenarios
where the attacker has only oracle access or can train a surro-
gate. When reporting transfer-based results, it is important to (i)
specify surrogate model families and training data, (ii) evaluate
both targeted and untargeted transfer success rates, and (iii) test
across multiple target architectures to avoid overestimating ro-
bustness against a narrow set of attacks. Overall, transfer-based
attacks highlight systemic, cross-model vulnerabilities and mo-
tivate defenses that prioritize representational diversity, robust
training, and careful evaluation protocols to ensure resilience
under realistic black-box threat models.

4.2. Privacy Attacks

Privacy attacks target the confidentiality of machine learn-
ing systems by attempting to extract sensitive information about
training data, model parameters, or user inputs. These attacks
expose hidden privacy risks in AI services and motivate the de-
velopment of privacy-preserving mechanisms. The most stud-
ied types include model inversion, membership inference, and
gradient leakage. Each highlights distinct vulnerabilities de-
pending on what information the attacker can access and how
the model exposes internal or output data.

4.2.1. Model Inversion
Model inversion attacks aim to reconstruct or approxi-

mate private training inputs based on the information exposed
through model outputs. Fredrikson et al. [53] demonstrated that
confidence scores from a facial recognition classifier could be
used to iteratively recover approximate facial features of indi-
viduals in the training set. By optimizing input candidates to
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maximize a target class probability, attackers can gradually gen-
erate synthetic inputs visually similar to genuine samples. This
poses severe risks in sensitive applications such as biometric
authentication or healthcare diagnostics, where reconstructed
images or attributes could reveal personally identifiable infor-
mation.

More advanced approaches leverage generative modeling to
improve reconstruction fidelity. Yang et al. [54] utilized Gen-
erative Adversarial Networks (GANs) to learn an inverse map-
ping from model outputs (e.g., logits or gradient information)
back to plausible input representations. These methods gen-
eralize beyond simple classifiers and can recover semantically
coherent data even from limited side information. Hybrid at-
tacks combining GAN priors with gradient-based refinement
have achieved high-quality reconstructions of images and tabu-
lar records, underscoring the growing threat of inversion-based
leakage in modern ML deployments.

Model inversion can be formalized as reconstructing an input
x that maximizes the model’s confidence for a target class yt (or
matches a desired output statistic). In its simplest score based
form, the attacker solves

x↽ = arg max
x↓X

pω(yt | x) ⇐ ⇀R(x), (7)

where pω(yt | x) denotes the target class probability returned
by the model, R(x) is a regularizer that encodes a prior over
plausible inputs (for example, an ϑ2 penalty, total variation, or
a generative prior), and ⇀ balances fidelity and realism.

When auxiliary knowledge is available (for example, partial
attributes or a public prior), inversion can be posed as matching
model outputs to a desired vector s (such as logits or confidence
scores):

x↽ = arg min
x↓X
⇑gω(x) ⇐ s⇑22 + ⇀R(x), (8)

where gω(x) represents the exposed output (logits, probabilities,
or intermediate signals). These objectives capture why confi-
dence scores and rich output APIs significantly increase inver-
sion risk.

4.2.2. Membership Inference
Membership inference attacks determine whether a specific

data record was included in a model’s training dataset. This
form of attack threatens data confidentiality in scenarios such
as medical or financial prediction services. The core idea is that
models often exhibit higher confidence or lower loss values on
training data than on unseen samples.

Shokri et al. [55] introduced a seminal shadow-model frame-
work, where attackers train multiple local models on synthetic
datasets to mimic the target’s decision behavior. By compar-
ing output confidence distributions for known members and
non-members, they train a meta-classifier to infer membership.
This approach was later simplified by Salem et al. [56], who
showed that shadow models are not essential: simple threshold-
ing on confidence or entropy values can still reveal membership
with high accuracy. These results demonstrate that even limited
black-box access can leak information about individual training
records.

Subsequent research has extended membership inference to
a variety of settings, including federated learning, differential
privacy, and large-scale foundation models. Attackers can ex-
ploit gradients shared during distributed training or confidence-
based overfitting in fine-tuned models. Moreover, correlation-
based membership inference can expose user participation in
multi-party datasets, raising critical privacy concerns for col-
laborative learning systems.

Membership inference can be modeled as a binary hypothesis
test for a record (x, y):

H0 : (x, y) ! D vs. H1 : (x, y) ↓ D.

A common and effective black box strategy uses the observation
that training points typically have smaller loss. The attacker
predicts membership using a threshold rule

m̂(x, y) = I[L( fω(x), y) ⇓ ⇁] , (9)

where ⇁ is chosen using auxiliary data (or calibrated via shadow
models), and I[·] is the indicator function.

Equivalently, attacks may threshold confidence, entropy, or
margin. For example, using predictive entropy H(pω(· | x)):

m̂(x) = I[H(pω(· | x)) ⇓ ⇁H
]
. (10)

These formulations make explicit that membership leakage is
driven by overfitting and calibration gaps, since the decision
rule exploits systematic differences between member and non
member outputs.

4.2.3. Gradient Leakage and Reconstruction
A more recent class of privacy attacks, gradient leakage, di-

rectly exploits gradients exchanged during distributed or feder-
ated learning to recover sensitive training data. Zhu et al. [69]
demonstrated that even a single gradient vector could enable the
near-exact reconstruction of private input samples through iter-
ative optimization. This vulnerability arises because gradients
implicitly encode information about both feature values and la-
bels.

Follow-up work has enhanced reconstruction fidelity through
regularization and prior knowledge about data distribution,
leading to practical gradient inversion frameworks such as DLG
and iDLG. These attacks highlight that sharing gradients or pa-
rameter updates, even without direct data exchange, may still
compromise user privacy. Accordingly, combining secure ag-
gregation protocols with differential privacy noise has become
a critical direction for protecting distributed learning systems.

In gradient leakage attacks, the adversary observes a gradient
(or update) g produced during training, for example

g = ⇔ωL( fω(x), y),

and attempts to recover the private training example (x, y) that
generated it. A widely used abstraction reconstructs inputs by
solving a gradient matching problem:

(x↽, y↽) = arg min
x↓X, y↓Y

⇑⇔ωL( fω(x), y) ⇐ g⇑22 + ⇀R(x), (11)
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where R(x) is an input prior (for example, total variation for
images or language model priors for text), and ⇀ controls the
strength of the prior.

In federated or distributed learning, attackers may ob-
serve an aggregated update ∆ω or mini batch gradient gB =∑

i↓B ⇔ωL( fω(xi), yi). Reconstruction then becomes a con-
strained optimization over a batch of inputs, which is why reg-
ularization, initialization strategies, and distribution priors can
significantly improve attack fidelity in practice.

4.3. Model Extraction

Model extraction attacks aim to replicate a target model’s be-
havior, parameters, or architecture through systematic query-
ing or side-channel observation. By exploiting access to model
predictions, attackers can reconstruct near-equivalent replicas
without direct access to training data or source code. Such at-
tacks threaten the intellectual property (IP) of commercial AI
services, undermine model confidentiality, and can facilitate
downstream attacks such as adversarial transfer or membership
inference. Common approaches include architecture stealing,
parameter stealing, and functionality stealing.

4.3.1. Architecture Stealing
Architecture stealing attacks seek to infer a model’s underly-

ing structure, such as depth, layer type, and activation functions,
using only external observations. Oh et al. [57] demonstrated
that side-channel information like response latency and output
sensitivity can be exploited to approximate architectural details.
By probing models with controlled inputs and analyzing timing
variations or perturbation responses, attackers can reconstruct
coarse-grained structural patterns. This is particularly concern-
ing for cloud-hosted AI APIs, where the model’s metadata is
concealed but inference latency remains observable.

Jagielski et al. [58] extended this concept by employing neu-
ral architecture search (NAS) to automate model structure re-
covery through iterative black-box interaction. Their method
progressively refines a candidate architecture based on similar-
ity between predicted outputs, converging toward a replica with
comparable functionality and topology. Such attacks demon-
strate that even without source access, adversaries can recover
significant architectural information, highlighting the need for
architectural obfuscation and query randomization in commer-
cial ML deployments.

4.3.2. Parameter Stealing
Parameter stealing focuses on recovering or approximating

the internal weights of a trained model. Tramer et al. [59] first
showed that models trained on public datasets can be cloned
through repeated black-box queries and regression fitting, espe-
cially for shallow networks and linear classifiers. Their findings
revealed that accurate approximations can be achieved with far
fewer queries than expected, raising concerns about the confi-
dentiality of deployed prediction APIs.

Building on this, Chandrasekaran et al. [61] demonstrated
that incorporating prior knowledge of training dynamics, such
as optimizer behavior, initialization schemes, or learning rate

schedules, further improves reconstruction accuracy. In dis-
tributed and federated settings, Zhu et al. [60] showed that
intercepting gradient updates during training allows attackers
to reconstruct both parameters and data representations via
inversion-based optimization. These results emphasize the im-
portance of secure aggregation, model encryption, and gradient
perturbation to safeguard parameter confidentiality.

4.3.3. Functionality Stealing
Functionality stealing replicates the predictive behavior of a

target model by training a surrogate or student model based on
query responses. Orekondy et al. [62] introduced the Knockoff
Nets framework, which employs active learning to select infor-
mative queries that efficiently explore a target’s decision bound-
aries. By leveraging feedback from the target’s predictions, the
attacker can train a student model achieving comparable accu-
racy with a limited number of adaptive queries.

Krishna et al. [63] advanced this idea through meta-learning,
proposing a few-shot functionality stealing framework that
learns generalizable imitation strategies. This allows adver-
saries to clone proprietary models even with minimal la-
beled data or limited query budgets. Such attacks have
profound implications for commercial machine-learning-as-a-
service (MLaaS) platforms, where prediction APIs expose valu-
able intellectual property. Effective defenses include query-rate
limiting, model watermarking, output randomization, and ac-
cess control mechanisms to detect and deter large-scale model
replication.

5. Defense Mechanisms

Machine learning models deployed in critical applications
are increasingly targeted by adversarial attacks. To secure these
systems, a wide range of defense strategies have been devel-
oped, each aiming to protect different stages of the machine
learning pipeline. These defenses are typically categorized
into four primary layers: preventive, detection, reactive, and
privacy-preserving mechanisms. Figure 4 provides a high-level
schematic of defense mechanisms in adversarial machine learn-
ing, highlighting how different defense categories complement
each other within a unified protection pipeline.

Table 5 provides a concise summary of these categories,
including representative techniques and their core objectives.
Each layer complements the others to form a holistic, multi-
layered defense framework capable of countering diverse ad-
versarial threats.

5.1. Preventive Defenses

Preventive defenses aim to strengthen machine learning mod-
els before adversarial inputs are encountered. Unlike detection
or reactive strategies that respond after an attack, preventive ap-
proaches attempt to embed robustness into the model design or
input preprocessing pipeline. They are typically applied during
training or as front end transformations, proactively reducing
a model’s vulnerability. However, preventive defenses are not
foolproof; attackers often adapt quickly to their structures and
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Table 5: Taxonomy of Defense Mechanisms Against Adversarial Attacks

Defense Category Technique Description

Preventive Defenses
Input Sanitization [70, 71] Removes adversarial perturbations through preprocessing techniques such as JPEG compression,

smoothing, or projection onto clean data manifolds.
Robust Training [17, 72] Trains models with adversarial examples or optimization-based formulations to enhance resilience

to perturbations.
Certified Defenses [73, 74] Provide provable robustness guarantees using techniques like randomized smoothing or convex

relaxations.

Detection Mechanisms
Statistical Detection [75] Identifies adversarial inputs using statistical deviations in input distributions or model confidence.
NN-based Detection [76] Trains auxiliary models to distinguish adversarial inputs from legitimate ones.
Behavioral Analysis [77] Monitors internal representations or temporal dynamics to flag anomalous behavior.

Reactive Defenses
Model Patching [78, 79] Fine-tunes or reprograms specific model parameters to neutralize discovered vulnerabilities.
Input Reconstruction [71, 80] Uses autoencoders or projection methods to recover clean inputs.
Ensemble Methods [81, 76] Combines multiple models or detection strategies to improve robustness and mitigate attack trans-

ferability.

Privacy Preserving
Differential Privacy [82, 13] Adds noise during training or inference to obscure individual data contributions.
Federated Learning [83, 84] Enables collaborative training without centralized access to sensitive data.
Secure Aggregation [85, 83] Aggregates model updates using cryptographic protocols to preserve individual privacy.
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Figure 4: Overview of defensive strategies against adversarial attacks in ma-
chine learning, including preventive, detection, reactive, and privacy-preserving
mechanisms.

assumptions, creating an ongoing cycle of refinement and cir-
cumvention. This section discusses three primary approaches,
input sanitization, robust training, and certified defenses, and
examines their practical benefits, inherent tradeoffs, and long
term sustainability in real world settings.

5.1.1. Input Sanitization
Input sanitization removes or neutralizes adversarial pertur-

bations before data are fed into the model. These methods as-
sume that adversarial noise typically resides in imperceptible,
high frequency components that can be filtered out while re-
taining the semantic content of the input. Classical sanitization
techniques include JPEG compression, bit depth reduction, im-
age quilting, and Gaussian blurring [70]. Such transformations
are lightweight and model agnostic, making them attractive as
plug in preprocessing defenses for computer vision and multi-
media pipelines.

More advanced methods use learned projections to restore
perturbed samples. Defense GAN [71], for instance, trains a

generative model to project inputs onto the manifold of nat-
ural images by optimizing for a latent representation that re-
constructs a clean version of the input. Autoencoder based
approaches similarly use reconstruction loss to remove noise
while preserving structural integrity. These techniques, how-
ever, introduce their own risks. Over reliance on learned san-
itization can lead to reconstruction artifacts or domain overfit-
ting, and attackers can craft adaptive perturbations that survive
these transformations. Consequently, modern research empha-
sizes hybrid sanitization pipelines that combine hand crafted
and learned methods, coupled with adaptive noise modeling and
uncertainty estimation to sustain robustness against evolving at-
tack strategies.

5.1.2. Robust Training
Robust training integrates adversarial awareness directly into

the model optimization process and represents one of the most
established preventive defenses in adversarial machine learn-
ing. The foundational adversarial training framework [2] aug-
ments clean data with adversarial examples generated during
training, compelling the model to learn perturbation-invariant
representations. While conceptually simple and empirically ef-
fective, this approach often incurs heavy computational costs
and introduces a tradeoff between robustness and clean-data ac-
curacy.

Building on this foundation, more advanced methods such
as Projected Gradient Descent (PGD) adversarial training [17]
iteratively generate stronger perturbations within bounded
norms, while TRADES [72] formulates a theoretical compro-
mise between natural accuracy and adversarial robustness via
a dual-objective loss. Subsequent research, including interval
bound propagation, curriculum-based adversarial training, and
adversarial data augmentation, further enhances training effi-
ciency and generalization.

Recently, a new wave of studies has emerged to advance ro-
bust training beyond conventional paradigms. These include
adversarial training for single-modal architectures [86, 87, 88],
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few-shot adversarial training that leverages meta-learning for
data-scarce scenarios [89, 90, 91, 92], adversarially robust
knowledge distillation that transfers robustness from teacher to
student networks [89, 93, 92], and adversarial fine-tuning tech-
niques for multimodal and large foundation models [94, 95, 96].
These developments aim to address the scalability, adaptability,
and cross-domain generalization challenges that limit classical
adversarial training.

Despite its success, adversarial training epitomizes the ongo-
ing cat-and-mouse dynamics of adversarial learning, each im-
provement in defense objectives tends to inspire new adaptive
attacks that exploit implicit biases or norm constraints. Further-
more, models may exhibit robustness overfitting, maintaining
stability against known attacks but failing under unseen per-
turbations. Consequently, emerging research emphasizes scal-
able and adaptive robust training frameworks that adjust pertur-
bation strengths dynamically, incorporate certified guarantees,
and jointly optimize for robustness, privacy, and fairness to en-
sure more durable protection in real-world systems.

5.1.3. Certified Defenses
Certified defenses aim to provide formal mathematical guar-

antees that a model’s prediction will remain stable under
bounded adversarial perturbations. One of the most widely
adopted approaches is randomized smoothing [73], which con-
structs a smoothed classifier by averaging predictions over
Gaussian noised variants of each input. This yields probabilistic
certification within an ϑ2 neighborhood, ensuring that no pertur-
bation within that bound can alter the model’s output with high
confidence.

Beyond randomized smoothing, a range of analytical frame-
works provide deterministic certification. Interval bound prop-
agation computes activation bounds layer by layer, while lin-
ear relaxation and convex outer approximation methods [74]
characterize decision boundaries through tractable constraints.
These approaches deliver strong theoretical guarantees but re-
main difficult to scale to deep architectures and high dimen-
sional data. Furthermore, certified bounds may not always cap-
ture practical attack settings, leaving residual vulnerabilities ex-
ploitable by unconstrained or distribution shifting adversaries.

The long term effectiveness of certified defenses depends
on bridging this gap between theoretical robustness and prac-
tical deployment. Current efforts explore combining certifica-
tion with adversarial training, leveraging mixed precision arith-
metic, and incorporating probabilistic priors to reduce computa-
tional cost. In the broader adversarial landscape, certified meth-
ods serve as an essential benchmark for verifiable robustness,
offering stability and trustworthiness where empirical defenses
remain susceptible to the evolving arms race between attackers
and defenders.

5.2. Detection Methods

Detection based defenses aim to identify adversarial inputs
at inference time before they can influence model predictions.
Unlike preventive or reactive mechanisms that modify training
or model structure, detection methods function as monitoring

layers that differentiate adversarial examples from benign data
based on their statistical, neural, or behavioral inconsistencies.
They are often attractive because of their modularity and ease
of deployment. However, detection alone rarely provides per-
manent robustness, as adaptive attackers can modify perturba-
tions to evade detection thresholds. The following subsections
discuss major detection paradigms, statistical detection, neural
network based detection, and behavioral analysis, while analyz-
ing their effectiveness, limitations, and role in the ongoing cat
and mouse evolution between attackers and defenders.

5.2.1. Statistical Detection
Statistical detection identifies adversarial inputs by exploit-

ing measurable deviations from the distribution of natural data.
These deviations are typically captured from internal feature
representations or prediction confidence scores, where adver-
sarial examples tend to occupy low density or high uncertainty
regions of the feature space. Approaches such as kernel density
estimation, confidence thresholding, and hypothesis testing are
commonly used to measure these deviations.

Feinman et al. [75] combined kernel density estimation in the
hidden layer space with Bayesian uncertainty metrics to flag
anomalous samples. Subsequent works introduced measures
such as the Maximum Mean Discrepancy (MMD) and Maha-
lanobis distance to quantify distributional shifts or to detect out
of distribution inputs based on their proximity to class condi-
tional centroids. These statistical techniques are lightweight,
interpretable, and effective against simple perturbations, but
they are vulnerable to adaptive attacks that explicitly minimize
detection metrics during optimization. Moreover, the effective-
ness of these methods depends heavily on accurate estimation
of feature distributions, which can vary under domain shift or
noisy real world data. Current research therefore emphasizes
dynamic, self calibrating thresholds and hybrid pipelines that
integrate statistical analysis with adversarial training or ensem-
ble verification to sustain long term effectiveness.

5.2.2. Neural Network Based Detection
Neural based detection methods train auxiliary classifiers to

distinguish adversarial inputs from benign ones by learning dis-
criminative patterns in raw data, internal activations, or gradient
features. Feature Squeezing [76] is an early example that tests
a model’s stability under transformations such as input quan-
tization or smoothing. Adversarial examples often cause in-
consistent predictions under these operations, whereas benign
inputs remain stable. Later approaches embed detection sub-
networks directly into the model architecture, using contrastive
or adversarial training objectives to enhance sensitivity to ma-
licious perturbations.

More recent designs employ ensembles of detector heads dis-
tributed across intermediate layers, combining gradient statis-
tics, logits, and feature maps to provide a multi view defense
perspective. While these methods improve detection rates, they
are still susceptible to adaptive attacks that jointly optimize for
both classification accuracy and detector evasion. This ongoing
adversarial adaptation cycle reflects the inherent cat and mouse
nature of AML: each new detection scheme motivates counter
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strategies that exploit its learned decision boundary. As a re-
sult, modern work increasingly focuses on hybrid detectors that
combine adversarial signal amplification with certified robust-
ness measures or meta learning based self adaptation to main-
tain resilience over time.

5.2.3. Behavioral Analysis
Behavioral analysis detects adversarial inputs by observing

internal network dynamics such as activation trajectories, gradi-
ent patterns, or temporal consistency in model outputs. Instead
of focusing solely on static input properties, these methods as-
sess how a model behaves across layers or over sequences of in-
puts. For instance, activation clustering [77] identifies targeted
or poisoned inputs by detecting outliers in neuron activation
distributions. Temporal analysis tracks shifts in feature statis-
tics across consecutive inference windows, while spatial con-
sistency checks compare representations across multiple layers
to identify anomalous propagation paths.

Behavioral detection provides deeper interpretability, as it re-
veals how adversarial perturbations alter model decision pro-
cesses. However, its robustness depends on stable baseline pro-
files and extensive monitoring, which can increase computa-
tional overhead. Adaptive attackers can also inject perturba-
tions that mimic benign activation trajectories, gradually erod-
ing detection reliability. To address these issues, recent studies
explore probabilistic and meta learning based behavioral mod-
els that adjust their detection thresholds dynamically according
to context and history. Such adaptive frameworks represent a
promising direction toward long term, self learning defenses
that co evolve with adversarial strategies rather than relying on
static detection rules.

Overall, detection methods serve as an important component
of multi layer defense architectures but cannot guarantee last-
ing protection in isolation. Their continued relevance depends
on integrating adaptive learning, hybridization with other de-
fense categories, and automated retraining pipelines that evolve
alongside emerging attack patterns.

5.3. Reactive Defenses
Reactive defenses are designed to mitigate or recover from

adversarial interference after it has occurred, typically during
inference or post deployment. Unlike preventive strategies that
aim to harden models during training, reactive methods de-
tect, correct, or adapt to adversarial inputs at runtime. This
makes them particularly valuable in dynamic or high stakes en-
vironments where new attack strategies continuously emerge.
However, while reactive defenses provide adaptability and fast
recovery, their long term effectiveness often depends on how
quickly they can evolve alongside adversarial tactics. This sec-
tion discusses three major categories: model patching, input
reconstruction, and ensemble based defenses, and critically ex-
amines their strengths, limitations, and ongoing challenges in
sustaining robustness against adaptive attacks.

5.3.1. Model Patching
Model patching refers to updating or modifying specific lay-

ers, parameters, or modules of a deployed model to neutralize

discovered vulnerabilities without performing full retraining. A
common approach is adversarial fine tuning, which retrains the
model on adversarial examples encountered after deployment
to reinforce decision boundaries near sensitive regions. This in-
cremental adaptation enables rapid deployment of fixes in real
world systems, making it attractive for applications such as au-
tonomous vehicles and healthcare monitoring.

Recent research extends patching with meta learning to im-
prove generalization and responsiveness. Gupta et al. [78] pro-
posed synthesizing patches through meta gradients that allow
quick adaptation to unseen attack types. Wang et al. [79] fur-
ther introduced a meta defense framework that learns universal
patching strategies across tasks and attack distributions, reduc-
ing manual intervention. Despite these advances, model patch-
ing faces inherent challenges. It primarily reacts to known at-
tack signatures and may struggle to anticipate future threats.
Repeated or uncoordinated patching can degrade generalization
or induce unintended biases, similar to software patch fatigue in
cybersecurity. Furthermore, the lack of standardized evaluation
for patched models makes it difficult to guarantee stability un-
der adaptive adversaries. Future research must therefore inte-
grate continual monitoring, automated vulnerability detection,
and patch verification pipelines to sustain long term robustness.

5.3.2. Input Reconstruction
Input reconstruction defenses aim to restore adversarial in-

puts to their clean, benign forms by projecting them onto the
natural data manifold. These approaches often employ genera-
tive or reconstructive models trained on legitimate data, lever-
aging the assumption that adversarial perturbations distort sta-
tistical regularities that can be corrected. Defense GAN [71]
exemplifies this paradigm by using a GAN trained on clean
samples and optimizing for a latent representation that repro-
duces the input while removing adversarial artifacts. Chen et
al. [80] provided an extensive review of reconstruction based
defenses, encompassing denoising autoencoders, manifold reg-
ularization, sparse coding, and variational inference.

Reconstruction defenses are appealing because they can act
as modular preprocessing components, strengthening existing
classifiers without altering their architecture. Nevertheless, sev-
eral issues limit their reliability in practice. Iterative optimiza-
tion introduces inference latency, and imperfect reconstructions
may distort semantic features essential for correct classifica-
tion. Moreover, adaptive attackers can design perturbations that
survive projection or even exploit the reconstruction model it-
self, rendering defenses ineffective. These shortcomings high-
light the broader cat and mouse pattern of adversarial learn-
ing research: every new reconstruction scheme prompts cor-
responding adaptive counterattacks that exploit its inductive bi-
ases. Hence, current research trends emphasize hybrid defenses
that combine reconstruction with adversarial training or detec-
tion, as well as certified approaches that provide provable guar-
antees on projection stability.

5.3.3. Ensemble Methods
Ensemble based defenses enhance robustness by aggregating

predictions or anomaly scores from multiple diverse models or
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feature transformations. The underlying intuition is that adver-
sarial examples crafted for a single model rarely transfer effec-
tively to a heterogeneous ensemble. Tramer et al. [81] intro-
duced ensemble adversarial training, where models are trained
on both their own adversarial examples and those transferred
from other ensemble members, improving cross model robust-
ness. Similarly, Xu et al. [76] developed feature squeezing,
which applies transformations such as bit depth reduction or
spatial smoothing to reveal inconsistencies in model predic-
tions, enabling the detection or rejection of adversarial inputs.

While ensemble defenses provide redundancy and improve
decision diversity, they also introduce practical challenges.
Maintaining multiple models increases computational, mem-
ory, and energy overhead, making large ensembles infeasible
for latency sensitive or resource constrained systems. More-
over, adaptive attackers can exploit shared vulnerabilities or
target the ensemble aggregation logic directly, producing ad-
versarial examples that simultaneously degrade all constituent
models. Recent studies thus explore compact or hierarchical en-
sembles that preserve diversity with reduced cost, and ensem-
ble distillation techniques that compress collective robustness
into a single student model. Despite these advances, ensem-
ble defenses still face the persistent challenge of sustainabil-
ity. Without continual diversification and adaptive retraining,
their effectiveness can erode over time as new attack strategies
emerge. Nonetheless, they remain one of the most resilient and
widely adopted paradigms for real world defense deployment,
balancing immediate protection with the flexibility to evolve.

5.4. Privacy-Preserving Techniques
Privacy-preserving techniques are essential to safeguard sen-

sitive user data against inference and extraction attacks in ma-
chine learning. These approaches aim to ensure that model
training and inference do not reveal specific information about
any individual data point. This section discusses differential
privacy, federated learning, and secure aggregation, three foun-
dational strategies used to achieve privacy guarantees in modern
ML systems. While these techniques offer strong theoretical
protection, their real-world deployment continues to face chal-
lenges related to efficiency, robustness, and resilience against
adaptive adversaries.

5.4.1. Differential Privacy
Differential Privacy (DP) provides a rigorous mathematical

framework for protecting individual data contributions in sta-
tistical computations. A mechanism is said to be differentially
private if its output distribution is nearly indistinguishable when
a single individual’s data is modified, ensuring plausible denia-
bility for all users whose data is involved in training. A widely
used instantiation is DP-SGD [82], which modifies stochastic
gradient descent by clipping gradient norms and adding cali-
brated Gaussian noise to each update. This process bounds the
influence of any single data point on the learned model.

Foundational work by Dwork et al. [13] established the the-
oretical underpinnings of DP and introduced composition theo-
rems, sensitivity analysis, and privacy budget accounting. De-
spite these guarantees, DP often incurs significant utility loss,

particularly on small or imbalanced datasets, and its noise in-
jection can reduce model robustness against adversarial pertur-
bations. Moreover, adaptive adversaries can exploit cumulative
gradient leakage or correlated updates to infer private attributes
despite DP protection. This ongoing tension between privacy
strength, model accuracy, and adversarial resilience exemplifies
the cat-and-mouse dynamics in designing sustainable privacy
defenses.

Differential privacy provides a formal guarantee that the out-
put of a learning algorithm does not reveal sensitive informa-
tion about any individual training sample. A randomized algo-
rithm A is said to satisfy (ε, ς)-differential privacy if, for any
two neighboring datasets D and D↑ that differ by a single record
and for any measurable output set S , it holds that

Pr[A(D) ↓ S ] ⇓ eε Pr[A(D↑) ↓ S ] + ς. (12)

In deep learning, differential privacy is commonly enforced
during training via differentially private stochastic gradient de-
scent (DP-SGD). At each iteration, per-sample gradients are
clipped to a fixed norm bound C, and calibrated noise is added
before aggregation:

g̃ =
1
|B|



∑

i↓B

clip(⇔ωL( fω(xi), yi),C)

 +N(0,σ2C2I), (13)

where B denotes the mini-batch, σ controls the noise magni-
tude, and N(0, ·) is Gaussian noise.

This formulation illustrates how DP mitigates privacy attacks
such as membership inference and gradient leakage by limiting
the influence of any single data point on the learned model, al-
beit often at the cost of reduced utility or slower convergence.

5.4.2. Federated Learning
Federated Learning (FL) is a decentralized learning

paradigm where multiple clients collaboratively train a global
model without directly sharing their local data. Each client
computes local updates and sends them to a central server,
which aggregates them to update the global model. This setup
reduces direct data exposure and supports compliance with pri-
vacy regulations. Bonawitz et al. [83] proposed a scalable
and fault-tolerant architecture for practical FL, addressing chal-
lenges such as client dropout, straggler mitigation, and secure
aggregation.

Kairouz et al. [84] provided a comprehensive overview of
advances in FL, including personalization, communication effi-
ciency, and system heterogeneity. However, FL remains vulner-
able to information leakage through shared gradients, model in-
version, and poisoning attacks from compromised clients. Ro-
bust aggregation and differential privacy are frequently com-
bined with FL to mitigate these risks, though this often intro-
duces trade-offs in model convergence and accuracy. The field
continues to evolve in response to adversarial innovations, il-
lustrating that federated learning, while privacy-enhancing, is
not inherently robust without adaptive defenses and continuous
verification.

Federated learning aims to train a global model collabora-
tively across multiple clients while keeping raw data local. Let
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Dk denote the local dataset of client k, and let fω be the global
model. The overall training objective can be written as

min
ω

K∑

k=1

|Dk |
|D| E(x,y)↗Dk

[L( fω(x), y)
]
, (14)

where K is the number of participating clients.
In each communication round, clients compute local updates

(e.g., gradients or model weights) based on their private data
and send them to a central server. The server aggregates these
updates using methods such as Federated Averaging (FedAvg):

ω(t+1) =

K∑

k=1

|Dk |
|D| ω

(t)
k , (15)

where ω(t)k denotes the locally updated model at client k.
While federated learning reduces direct data exposure,

this formulation highlights that shared updates can still leak
sensitive information, motivating the integration of privacy-
enhancing techniques such as differential privacy and secure
aggregation.

5.4.3. Secure Aggregation
Secure aggregation protocols aim to protect the confidential-

ity of individual model updates during aggregation in federated
learning settings. The central idea is that the server can compute
an aggregate (e.g., sum or average) of client updates without
learning any individual contribution. Hardy et al. [85] present
an efficient cryptographic protocol for secure aggregation based
on additively homomorphic secret sharing. Their approach is
robust against client dropout and scales to large populations,
making it suitable for deployment in real-world distributed sys-
tems.

Bonawitz et al. [83] integrated secure aggregation into their
federated learning framework, combining it with system-level
optimizations to minimize communication and computation
overhead. Nevertheless, secure aggregation alone cannot pre-
vent gradient-based inference or collusion among malicious
clients. Its computational cost and dependency on strong cryp-
tographic assumptions further limit its scalability in resource-
constrained environments. Future research aims to design
lightweight, verifiable aggregation schemes that maintain con-
fidentiality while supporting adaptive threat detection, reinforc-
ing long-term resilience against adversarial evolution.

Secure aggregation aims to prevent the server from observing
individual client updates in federated learning, while still en-
abling correct computation of the aggregated result. Let uk de-
note the local update (e.g., gradient or model difference) com-
puted by client k. Instead of sending uk in plaintext, each client
transmits an encrypted or masked version ũk such that the server
can only recover the sum

K∑

k=1

uk, (16)

but learns nothing about any individual update uk.

A common approach is to use additive masking, where each
client constructs

ũk = uk +
∑

j"k

rk, j, (17)

with random masks rk, j that cancel out when all masked up-
dates are summed at the server. As a result, the server obtains
the correct aggregated update while individual contributions re-
main hidden.

By ensuring that only aggregated information is revealed, se-
cure aggregation significantly reduces the risk of gradient leak-
age and reconstruction attacks, especially when combined with
differential privacy in federated learning systems.

5.5. Comparative Discussion and Deployment Insights

Building upon the taxonomy in Table 5, this subsection pro-
vides a comparative discussion of major defense techniques in
each category, focusing on their strengths, limitations, and prac-
tical deployment challenges. While these defenses collectively
enhance system robustness, each carries distinct trade-offs in
terms of computational cost, adaptability, and real-world appli-
cability.

5.5.1. Preventive Defenses
Preventive defenses aim to proactively strengthen model ro-

bustness before adversarial interference occurs. Among them,
(1) Input sanitization techniques are lightweight and easily de-
ployable, offering first-line protection by filtering adversarial
noise through transformations such as JPEG compression or
learned projections. They are effective against small pertur-
bations but often degrade clean accuracy and can be bypassed
by adaptive attacks that manipulate low-frequency or semantic
features. (2) Robust training methods, such as adversarial and
PGD-based training [17], remain the most empirically reliable
strategy for in-distribution robustness. However, their compu-
tational demands and reduced clean-data accuracy limit scal-
ability in production systems. Techniques like TRADES [72]
mitigate this trade-off by explicitly balancing accuracy and ro-
bustness, though the balance remains dataset-dependent. (3)
Certified defenses (e.g., randomized smoothing [73], convex re-
laxations [74]) provide provable robustness guarantees. These
methods are conceptually appealing for safety-critical settings
such as autonomous driving or finance, but their conservative-
ness and computational cost hinder widespread adoption. In
practice, certified defenses are best combined with robust train-
ing to offer both empirical and theoretical resilience.

5.5.2. Detection Mechanisms
Detection-based defenses act as gatekeepers at inference

time. (1) Statistical detection approaches are efficient and inter-
pretable, detecting adversarial inputs by identifying deviations
in confidence scores or feature distributions [75]. They are easy
to integrate into deployed systems but are sensitive to threshold
calibration and dataset drift, which can lead to false positives.
(2) Neural network-based detectors leverage trainable discrim-
inators or auxiliary models to identify adversarial patterns [76].
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Table 6: Comparative Trade-offs Across Defense Techniques

Defense Category Representative Techniques Robustness Accuracy Loss Computation Cost Deployability

Preventive Sanitization, Robust Training, Certification High Medium-High High Moderate

Detection Statistical, NN-based, Behavioral Medium Low Low-Moderate High

Reactive Patching, Reconstruction, Ensemble Medium-High Low Moderate-High Moderate

Privacy-Preserving DP, FL, Secure Aggregation Medium (privacy) Medium Moderate-High High

Table 7: Representative robust accuracy of state-of-the-art defenses discussed in this survey on standard benchmarks. The table compares clean and adversarial
(PGD-10) accuracy, highlighting the trade-off between model performance and robustness.

Defense Method Reference Dataset Clean Accuracy (%) Robust Accuracy (% under PGD-10)

Adversarial Training Madry et al. [17] CIFAR-10 87.3 45.8
TRADES Zhang et al. [72] CIFAR-10 84.9 56.6
Randomized Smoothing Cohen et al. [73] ImageNet 69.0 43.0
Certified Defense (Linear Relaxation) Wong et al. [74] CIFAR-10 79.8 36.5
RobustBench Leaderboard (2025 snapshot) Croce et al. [33] CIFAR-10 90.2 63.0

These offer flexibility and adaptability but require diverse ad-
versarial examples for training and may overfit to known at-
tacks, leaving them vulnerable to unseen perturbations. (3)
Behavioral analysis defenses monitor internal dynamics such
as activation distributions and temporal variations [77]. While
harder to spoof and useful in adaptive environments, they de-
mand additional telemetry and increase inference latency. In
deployment, combining statistical and behavioral detection can
achieve a better balance between accuracy, interpretability, and
robustness.

5.5.3. Reactive Defenses
Reactive defenses mitigate or adapt to adversarial attacks

during inference or post-deployment. (1) Model patching [78,
79] allows targeted fine-tuning or reprogramming of vulnera-
ble model components, offering fast mitigation with minimal
retraining. Its flexibility makes it ideal for environments facing
evolving threats, though patches may overfit or interfere with
normal behavior if not validated carefully. (2) Input reconstruc-
tion approaches [71, 80] restore perturbed inputs through de-
noising autoencoders or generative projection. These are mod-
ular and compatible with legacy models but can introduce la-
tency due to iterative optimization. Their success heavily de-
pends on reconstruction quality and the representativeness of
training data. (3) Ensemble methods [81, 76] aggregate predic-
tions from multiple models or transformations to dilute the ef-
fectiveness of single-model attacks. They improve resilience to
transferability but require additional memory and computation.
In practice, ensemble diversity (different architectures, training
seeds, or data subsets) is key to ensuring robustness.

5.5.4. Privacy-Preserving Techniques
Privacy-preserving mechanisms secure sensitive information

against inference and extraction threats rather than direct adver-
sarial perturbations. (1) Differential privacy [82, 13] provides
formal guarantees by injecting calibrated noise into gradients
or outputs, ensuring individual-level confidentiality. However,

excessive noise can degrade accuracy, making privacy-utility
trade-offs central to practical adoption. Adaptive clipping and
layer-specific noise scaling are effective mitigations in large
models. (2) Federated learning [83, 84] decentralizes train-
ing, enabling collaboration across clients without raw data ex-
change. It mitigates data exposure risks but remains susceptible
to poisoning and gradient leakage. Integrating federated train-
ing with differential privacy and secure aggregation protocols
improves robustness but increases communication and compu-
tation costs. (3) Secure aggregation [85, 83] employs crypto-
graphic methods to protect individual client updates during ag-
gregation. While it prevents information leakage from updates,
it does not defend against malicious clients or model poison-
ing by itself. Practical deployments often pair secure aggrega-
tion with Byzantine-robust aggregation and anomaly detection
to maintain both privacy and integrity in distributed learning
systems. Emerging research has also explored the dual use
of adversarial attacks for privacy protection, leveraging per-
turbations to obfuscate personal data and prevent unauthorized
model inversion or extraction [97, 98, 99]. These works high-
light the growing convergence between adversarial robustness
and data privacy as complementary objectives in trustworthy
machine learning.

5.5.5. Cross-Category Trade-offs
Table 6 summarizes the qualitative trade-offs among the four

major defense categories, while Table 7 complements this view
by providing quantitative benchmarks that capture the prac-
tical robustness-performance balance achieved by representa-
tive methods. Together, these tables highlight the diverse
strengths and limitations across preventive, detection, reactive,
and privacy-preserving strategies.

Preventive defenses, such as Adversarial Training and
TRADES, continue to offer the strongest protection against
perturbation-based attacks but incur nontrivial computational
overhead and a reduction in clean-data accuracy, as reflected
in Table 7. Detection and reactive defenses, in contrast, are
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more adaptable and computationally efficient, making them
attractive for real-time or resource-constrained environments,
though their effectiveness may degrade under adaptive adver-
saries. Privacy-preserving approaches like differential privacy
and secure aggregation address orthogonal concerns by mitigat-
ing information leakage, yet their integration with robustness
objectives often introduces additional performance trade-offs.

Quantitative results from Table 7 further reinforce these in-
sights: while certified defenses such as randomized smoothing
and linear-relaxation methods provide formal robustness guar-
antees, they typically achieve lower accuracy and scalability
than empirical methods. In practice, hybrid frameworks that
combine preventive robustness with lightweight detection and
privacy-preserving components provide the most balanced de-
fense strategy, achieving meaningful robustness without sac-
rificing system performance, scalability, or usability in real-
world machine learning deployments.

6. Real-world Applications and Case Studies

Adversarial machine learning has progressed from a theo-
retical concern to a practical threat with tangible implications
across numerous domains. This section highlights how AML
manifests in real-world applications, affecting sectors such as
computer vision, natural language processing, autonomous sys-
tems, and healthcare. As summarized in Table 8, we present
case studies and industry deployments that showcase both suc-
cessful adversarial attacks and the corresponding defense strate-
gies, emphasizing the urgency and importance of addressing
AML in operational settings.

6.1. Computer Vision

Computer vision systems are among the most susceptible
to adversarial attacks, as they often rely on high-dimensional
pixel data where imperceptible perturbations can drastically al-
ter model predictions. Szegedy et al. [1] were among the first to
demonstrate that deep convolutional neural networks could be
misled by carefully crafted, low-magnitude perturbations that
are visually indistinguishable to humans.

In safety-critical applications like autonomous driving, the
consequences can be severe. Eykholt et al. [4] introduced a
physical attack by placing small stickers on stop signs, lead-
ing state-of-the-art traffic sign classifiers to misinterpret them
as speed limit signs. Adversarial patches on vehicles or pedes-
trians have been shown to bypass object detectors used in real-
world systems such as those deployed by Tesla and Waymo,
raising concerns about road safety and regulatory compliance.

Face recognition and surveillance systems are also prime tar-
gets. Attackers have developed adversarial accessories, such as
eyeglass frames or patterned masks, that allow individuals to
evade detection or impersonate others in facial authentication
frameworks. In commercial applications like retail analytics
and smart city infrastructure, adversarial perturbations can dis-
rupt people-counting systems, gesture recognition interfaces,
and behavioral analytics pipelines, leading to both privacy vio-
lations and operational failures.

To counter these threats, a range of defenses has been ex-
plored. Adversarial training remains the most widely used
technique, although it is computationally expensive and task-
specific. Input preprocessing methods, such as JPEG com-
pression [70], image quilting, and bit-depth reduction, have
shown some efficacy in removing adversarial noise. Generative
approaches like Defense-GAN [71] attempt to project inputs
back onto the data manifold. Ensemble-based strategies that
combine predictions from multiple independently trained mod-
els also improve resilience. In industrial deployments, multi-
sensor fusion, cross-view consistency checks, and hardware
redundancy are increasingly being used to bolster robustness
against visual adversarial attacks.

6.2. Natural Language Processing

In natural language processing, adversarial attacks exploit
the inherent flexibility of human language (e.g., semantic equiv-
alence, syntactic variation, and character-level mutations) to de-
ceive models. Unlike image perturbations, text-based adversar-
ial examples must remain grammatically correct and semanti-
cally plausible to avoid human detection, making attack gener-
ation both challenging and impactful.

Ebrahimi et al. [100] introduced HotFlip, a white-box attack
that uses gradients to identify optimal character-level changes
capable of altering sentiment predictions. These minimal ed-
its, such as character swaps or deletions, can lead to misclas-
sifications in tasks like spam detection, hate speech filtering,
and legal document classification. More recent attacks target
word substitutions using embedding-based similarity metrics to
maintain fluency while degrading model performance.

Beyond text, adversarial attacks have also emerged in the
audio modality of NLP. Carlini and Wagner [101] crafted au-
dio adversarial examples that embed hidden voice commands.
These imperceptible perturbations activate smart assistants like
Alexa or Siri, exploiting the model’s sensitivity to phonetic am-
biguity and background noise. Such attacks pose serious risks
to privacy and device control.

Defensive techniques in NLP include embedding-stable
training that encourages consistency across semantically simi-
lar inputs, and adversarial data augmentation using paraphrases
or syntactic variants [102]. Adversarial regularization penalizes
high sensitivity to small textual changes during training, while
runtime defenses such as spell-checkers or grammar-aware fil-
ters can mitigate some character-level attacks. Models fine-
tuned on adversarially augmented datasets, particularly large
transformer models like BERT, exhibit improved robustness in
production systems deployed in content moderation, sentiment
analysis, and voice-based interfaces.

6.3. Autonomous Systems

Autonomous platforms, such as self-driving vehicles, drones,
and robotic systems, rely heavily on machine learning for tasks
including perception, localization, planning, and control. This
tight integration makes them prime targets for adversarial at-
tacks. Cao et al. [103] demonstrated that adversarial pertur-
bations on LiDAR point clouds can either fabricate phantom
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Table 8: Summary of Real-World Applications of Adversarial Machine Learning

Domain Example Attacks Real-World Defenses

Computer Vision Image misclassification, adversarial patches, face evasion attacks Adversarial training, input preprocessing, model ensembles [1, 4, 70]

NLP Synonym substitution, perturbations, adversarial audio Paraphrase-invariant training, adversarial BERT tuning [100, 101,
102]

Autonomous Systems Road sign spoofing, LiDAR hallucination, navigation error Sensor fusion, consistency checks, secure firmware [103, 104]

Healthcare Misdiagnosed medical images, ECG waveform manipulation Certified imaging pipelines, denoising autoencoders [5, 105]

Finance Fraud pattern evasion, adversarial credit scoring, market spoofing Ensemble anomaly detection, adversarial retraining [106, 107]

Network Traffic Adversarial detection, GAN-based attacks Strengthen feature representation, obfuscation [108, 109, 110, 111]

Cybersecurity Malware mutation, adversarial traffic patterns Byte masking, adversarial honeypots [112, 113]

Content Moderation Toxic content evasion, adversarial paraphrasing Graph-based filters, hybrid human-AI moderation [114, 115]

Industrial Systems Sensor spoofing, smart grid attacks Secure enclave control, protocol verification [116, 117]

objects or occlude real obstacles, severely impairing 3D object
detection systems used in autonomous driving.

In industrial automation, adversarial floor patterns have been
shown to confuse vision-based navigation systems in ware-
house robots and automated guided vehicles (AGVs), leading to
navigation errors or system halts. Aerial systems are similarly
susceptible, adversarial camouflage techniques can reduce the
effectiveness of onboard object detection in drones, impacting
surveillance and reconnaissance accuracy. These threats have
serious implications for both civilian and military autonomous
systems, where reliability is mission-critical.

In response, industry leaders such as NVIDIA, Boston Dy-
namics, and Cruise have incorporated defenses such as sen-
sor fusion (e.g., combining camera, radar, and LiDAR), tempo-
ral consistency checks, and adversarially retrained models into
their ML pipelines. Moreover, government-backed efforts like
DARPA’s Assured Autonomy initiative [104] focus on develop-
ing formal verification frameworks to ensure safety guarantees
even under adversarial conditions. These efforts underscore the
urgent need for robust and certifiable autonomy in adversarial
environments.

6.4. Healthcare

Adversarial machine learning in healthcare carries poten-
tially life-threatening consequences due to the high stakes in-
volved in clinical decision-making. Finlayson et al. [5] demon-
strated that minor perturbations to dermoscopic images could
lead to misclassification by dermatology AI systems, mistaking
benign lesions for malignant ones and vice versa. Similarly,
Hannun et al. [105] showed that adversarial noise introduced
into ECG signals could disrupt arrhythmia classification, risk-
ing misdiagnosis or treatment delay.

Beyond image and signal data, attacks on electronic health
record (EHR) systems and AI-based clinical decision support
tools have shown that adversarial manipulation of structured
patient data can lead to incorrect treatment recommendations.
Natural language generation models used in radiology report-
ing or diagnostic summarization can also be manipulated with
token-level perturbations that subtly alter medical conclusions.

Emerging threats include signal injection attacks on wearable
medical devices such as continuous glucose monitors, heart-
rate trackers, and insulin pumps, which may exploit wireless
vulnerabilities or physiological signal spoofing.

To counteract these threats, medical device manufacturers
like Siemens and Philips are adopting defenses including se-
cure enclaves, encrypted ML inference pipelines, adversarial
input denoising, and formal model auditing. Furthermore, the
U.S. Food and Drug Administration (FDA) is increasingly man-
dating adversarial robustness evaluations as part of its regula-
tory approval process for AI-based medical systems, signaling
a shift toward proactive security in digital healthcare.

6.5. Finance and Fraud Detection
Adversarial machine learning presents significant risks in fi-

nancial systems where models are used for fraud detection,
credit scoring, transaction monitoring, and algorithmic trad-
ing. Attackers can manipulate transaction logs or behavioral
sequences to evade detection. For instance, adversaries may
split large fraudulent transactions into smaller amounts, struc-
ture spending patterns to resemble legitimate users, or subtly
alter features like transaction time, location, or merchant type
to exploit model blind spots [106, 107].

Credit scoring systems are also vulnerable to feature manip-
ulation attacks. By strategically modifying input variables such
as income level, credit utilization, or address history, attack-
ers can receive inflated credit ratings without altering their ac-
tual risk profile. Such manipulations can be executed through
adversarial optimization algorithms designed to remain within
acceptable feature bounds, making them hard to detect during
auditing or verification.

High-frequency and algorithmic trading platforms are partic-
ularly sensitive to real-time data inputs. Malicious actors can
introduce synthetic patterns or noise into data feeds to manipu-
late the behavior of automated trading bots, potentially trigger-
ing flash crashes or market instability. These adversarial signals
may exploit vulnerabilities in prediction models used for price
movement forecasting or trade volume estimation.

In response, financial institutions such as Mastercard, Pay-
Pal, and Capital One have implemented ensemble-based fraud
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detection systems that leverage diverse classifiers trained on
different data slices or detection objectives. These ensembles
are often accompanied by robust logging mechanisms and ex-
plainability modules to facilitate post-incident forensics. Ad-
versarial training, model confidence calibration, and input vali-
dation are also incorporated into production pipelines to harden
models against subtle evasion techniques and maintain robust-
ness over time. Moreover, regulatory frameworks are increas-
ingly recognizing the need for adversarial robustness as a com-
ponent of AI model governance and auditability in the financial
sector.

6.6. Network Traffic

Adversarial machine learning has increasingly extended into
the domain of network and encrypted-traffic security, where
deep learning models are extensively employed for intru-
sion detection, service identification, and traffic classification.
While these models have achieved high performance by lever-
aging statistical and temporal flow characteristics, their depen-
dence on such implicit patterns also introduces new adversarial
vulnerabilities, particularly in encrypted communication sce-
narios where payload inspection is infeasible.

Recent studies have explored this emerging area from
both offensive and defensive perspectives. The CBS frame-
work [108] presents a deep learning architecture that integrates
spatial, temporal, and statistical representations to classify en-
crypted traffic, demonstrating the potential of multi-feature fu-
sion for more resilient network modeling. Similarly, AD-
VoIP [109] investigates adversarial detection of encrypted and
concealed VoIP flows, showing how AML methodologies can
be applied to uncover hidden communication behaviors under
encryption and obfuscation.

Complementary research has analyzed vulnerabilities and
proposed countermeasures in encrypted-traffic analytics. Liu
et al. [110] examined adversarial obfuscation techniques that
modify encrypted packet sequences to evade traffic classifi-
cation systems, exposing critical weaknesses in existing deep
models. More recently, Zhan et al. [111] introduced the EAPT
framework, which leverages adversarial pre-training based on
transformer architectures to strengthen feature representation
and enhance robustness against adversarial perturbations in en-
crypted traffic classification.

Collectively, these studies highlight the growing importance
of adversarial learning in modern network security. As traf-
fic increasingly shifts toward encrypted and privacy-preserving
protocols, robust AML-based techniques that can maintain
accurate classification, preserve user privacy, and withstand
adversarial manipulation will be essential for securing next-
generation communication infrastructures.

6.7. Cybersecurity and Intrusion Detection

Machine learning models deployed in cybersecurity, such as
malware classifiers and intrusion detection systems (IDS), are
attractive targets for adversarial attacks. These systems often
analyze high-dimensional, structured inputs like byte sequences
or network flows, which adversaries can subtly perturb to evade

detection. Hu and Tan [112] demonstrated that adversarial traf-
fic traces can be crafted to mimic benign behavior, allowing
attackers to bypass IDS without raising alerts.

Grosse et al. [113] further exposed the vulnerability of DNN-
based malware classifiers to adversarial byte-level modifica-
tions that retain malware functionality while flipping predic-
tions. Attackers also exploit adversarial evasion techniques in
command-and-control traffic, phishing payloads, and polymor-
phic malware, complicating traditional signature-based and be-
havioral detection.

To counter these threats, security practitioners have begun in-
tegrating byte-level masking, adversarial training, and anomaly
detection using attention-based models. Deception-based de-
fenses, such as honeypots enhanced with adversarial awareness,
lure attackers while collecting training data to improve detec-
tion robustness. Toolkits like IBM’s Adversarial Robustness
Toolbox (ART) and Microsoft’s Counterfit facilitate automated
robustness evaluation. Nonetheless, balancing detection sensi-
tivity and false positive rates under adversarial pressure remains
a critical challenge in operational environments.

6.8. Content Moderation and Recommender Systems
Content moderation and recommender systems, which rely

heavily on natural language processing and user engagement
signals, are susceptible to adversarial manipulation. Attack-
ers can construct fake profiles, generate synthetic reviews, or
manipulate click-through data to promote harmful content or
demote legitimate items. These attacks distort model behavior
in applications like product recommendations, news feeds, and
content curation.

Moderation systems are similarly vulnerable. Adversaries
exploit semantic-preserving transformations, obfuscations, and
typographic attacks (e.g., homoglyphs or zero-width charac-
ters) to evade hate speech, spam, and misinformation fil-
ters [114, 115]. These evasive inputs challenge even state-
of-the-art toxicity classifiers deployed in social media and e-
commerce platforms.

To mitigate these risks, companies like YouTube, TikTok,
Facebook, and Reddit utilize hybrid moderation pipelines.
These systems combine adversarially trained classifiers, rule-
based filters, and manual reviews. Graph-based anomaly de-
tection helps identify coordinated inauthentic behavior, includ-
ing botnets and adversarial influence operations. In recom-
mender systems, countermeasures such as robust matrix fac-
torization, user credibility scoring, and diversity-aware rank-
ing are adopted to reduce the impact of adversarial manipu-
lation. Continued advancements in model interpretability and
real-time monitoring are essential for securing these systems.

6.9. Industrial Control Systems
Industrial control systems (ICS), including those in manufac-

turing, utilities, transportation, and energy, are increasingly re-
liant on AI for predictive maintenance, anomaly detection, and
process optimization. These systems are particularly vulnera-
ble to adversarial attacks due to the physical consequences of
erroneous predictions. Zhang et al. [117] demonstrated that ad-
versarial perturbations on smart grid demand forecasting could
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lead to large-scale instability, resulting in inefficient resource
distribution or service disruptions.

Adversaries can also inject false sensor readings into pro-
grammable logic controllers (PLCs) or supervisory control and
data acquisition (SCADA) systems, causing actuators to mis-
behave. For example, modifying temperature or vibration sig-
nals can prevent timely maintenance alerts, while concealing
pipeline leaks or overheating events. Such attacks can be
stealthy, persistent, and hard to detect without physical redun-
dancy or secure sensing infrastructure.

Defensive strategies for ICS include physics-informed neu-
ral networks that embed domain knowledge into model con-
straints, certified control policies that enforce robustness guar-
antees under bounded perturbations, and secure enclave de-
ployment (e.g., Intel SGX) to prevent tampering during infer-
ence [116]. Industrial players like Siemens, ABB, and Honey-
well are increasingly investing in secure AI platforms and col-
laborating with national agencies. Regulatory bodies, includ-
ing the U.S. NIST and the European ENISA, are developing
guidelines and certification processes to promote the resilience
of industrial AI systems under adversarial conditions.

6.10. Robustness Benchmarks and Evaluation Frameworks
Beyond domain-specific case studies, the assessment of ad-

versarial robustness increasingly relies on standardized bench-
marking frameworks that provide reproducible and comparable
evaluations. Two prominent examples are RobustBench and Au-
toAttack, which have become widely adopted in both academic
and industrial settings.

RobustBench [33] serves as an open benchmark for evalu-
ating and tracking the progress of robust models under stan-
dardized threat models. It maintains a public leaderboard cov-
ering a variety of datasets such as CIFAR-10, CIFAR-100, and
ImageNet, enabling consistent comparisons of defenses across
architectures and attack methods. RobustBench emphasizes
transparency, encouraging the community to submit verified ro-
bustness scores obtained using unified testing pipelines.

AutoAttack [118] provides a strong, parameter-free ensem-
ble of adversarial attacks that evaluate model robustness in a
deterministic and reproducible manner. It eliminates the tuning
bias present in earlier attack evaluations, ensuring fairness and
reliability. AutoAttack has become a de facto standard for ro-
bustness verification in industrial pipelines, where reproducibil-
ity and efficiency are essential.

The integration of such benchmarks bridges the gap between
research and deployment by promoting standardized robustness
metrics. These frameworks also assist practitioners in model
certification, compliance auditing, and performance tracking
under adversarial conditions. As a result, they play a crucial
role in transitioning adversarial defense techniques from con-
trolled laboratory environments to production-grade, real-world
systems.

7. Observations and Lessons Learned

Through the comprehensive review of adversarial attacks,
defense mechanisms, and real-world applications presented in

this paper, several key observations and lessons emerge. These
insights reveal the evolving nature of adversarial machine learn-
ing and underscore the theoretical, practical, and systemic fac-
tors that shape progress toward robust and trustworthy AI sys-
tems.

7.1. Dynamic and Systemic Nature of Adversarial Robustness

Adversarial robustness is inherently dynamic rather than
static. Each generation of defenses, such as adversarial train-
ing, certified robustness, and privacy-preserving learning, has
eventually been overcome by newly adapted attack strategies.
This continuing evolution highlights that robustness is not a per-
manent property of a model but an ongoing process that must
be sustained through continuous retraining, adaptive evaluation,
and evolving threat modeling. Furthermore, robustness is not
confined to model design alone but extends across the entire
machine learning lifecycle. Many successful attacks, such as
data poisoning and backdoor insertion, exploit vulnerabilities
in data collection, labeling, or retraining pipelines. Therefore,
achieving robustness requires a holistic, system-level approach
that integrates data integrity assurance, secure model updates,
and proactive monitoring. Robustness must evolve alongside
both technological progress and adversarial sophistication.

7.2. Trade-offs, Evaluation Practices, and Domain Constraints

Another central lesson is that adversarial robustness always
entails trade-offs among accuracy, efficiency, interpretability,
and deployability. Preventive defenses, such as adversarial
training, often achieve strong robustness but incur high compu-
tational costs and degrade clean-data accuracy. Detection and
reactive methods are more lightweight but frequently attack-
specific and susceptible to adaptive evasion. Privacy-preserving
defenses mitigate information leakage but can amplify learning
noise and reduce predictive utility. The suitability of a defense
thus depends on domain-specific requirements such as latency,
resource constraints, and safety assurance. In mission-critical
fields like autonomous driving, healthcare, and finance, these
trade-offs determine whether a defense is viable in practice.
The emergence of standardized robustness benchmarks, includ-
ing RobustBench and AutoAttack, represents an important step
toward reproducible and transparent evaluation. Nevertheless,
future evaluation frameworks must account for adaptive threat
models, domain-specific constraints, and realistic deployment
scenarios to ensure the credibility of robustness claims.

7.3. Best Practices for Robustness Evaluation

To ensure rigorous and reproducible evaluation of adversarial
defenses, the following checklist summarizes key community-
accepted best practices:

• Adopt adaptive attack settings: Evaluate defenses under
adaptive, white-box conditions where the attacker is fully
aware of the defense mechanism. Avoid gradient masking
and obfuscation artifacts by verifying that attack gradients
remain informative [119].
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• Benchmark with standardized frameworks: Utilize
open platforms such as RobustBench and AutoAttack for
fair, comparable robustness measurement. These frame-
works provide unified evaluation metrics for clean accu-
racy, ϑp-bounded robustness (e.g., PGD-10), and certified
guarantees across model architectures.

• Include clean and adversarial accuracy: Report both
standard (clean) and adversarial accuracies to highlight
robustness-accuracy trade-offs and to prevent misleading
claims of security-through-obfuscation.

• Leverage verification and certification tools: Apply
formal verification methods such as randomized smooth-
ing [73] and convex relaxation [74] to provide certified ro-
bustness bounds where applicable.

• Ensure reproducibility: Publish attack configurations,
random seeds, and model checkpoints. Incorporate adap-
tive attack re-runs in supplementary materials or appen-
dices to verify defense stability.

These practices collectively promote transparency, compara-
bility, and scientific rigor in adversarial robustness evaluation.

7.4. Toward Integrated and Trustworthy Robustness

Finally, adversarial robustness should be pursued as part of a
broader vision of trustworthy AI that also encompasses privacy,
fairness, and interpretability. These aspects are deeply intercon-
nected: for example, differential privacy can protect individual
data but may inadvertently weaken robustness if noise injection
is excessive, while robustness-oriented defenses can shift model
behavior in ways that affect fairness or transparency. Address-
ing these interdependencies requires cohesive design frame-
works that jointly optimize across these objectives rather than
treating them as isolated problems. Future progress will de-
pend on cross-disciplinary collaboration among researchers in
security, machine learning, and systems engineering, supported
by formal verification, standardized reporting, and real-world
stress testing. Ultimately, lasting robustness will emerge from
adaptive, scalable, and ethically grounded approaches that in-
tegrate adversarial resilience with the broader goals of reliable
and trustworthy AI.

These observations and lessons lay the groundwork for the
following section, which discusses open challenges and re-
search directions that remain critical for advancing the field of
adversarial machine learning.

8. Challenges and Open Problems

Despite notable progress in identifying, characterizing, and
mitigating adversarial threats, adversarial machine learning
continues to face a range of fundamental challenges that hin-
der both theoretical understanding and practical deployment.

These challenges stem from the intrinsic complexity of mod-
ern machine learning systems, the adaptive and strategic na-
ture of adversaries, and persistent limitations in existing mod-
eling assumptions, evaluation methodologies, and data collec-
tion practices. As learning-based systems are increasingly inte-
grated into safety-critical and privacy-sensitive domains, such
as healthcare, autonomous systems, and financial services, the
impact of these unresolved issues becomes more pronounced
and consequential.

Many proposed attack and defense techniques remain effec-
tive only under narrowly defined threat models or controlled
experimental settings, and their reliability often degrades when
confronted with adaptive adversaries, distribution shifts, or
real-world operational constraints. Moreover, gaps between
theoretical robustness guarantees and empirical performance,
as well as mismatches between benchmark datasets and de-
ployment environments, further complicate the assessment of
adversarial risk. This section focuses on systematically identi-
fying and analyzing the key technical and practical bottlenecks
that currently limit the robustness, reliability, and deployability
of adversarial machine learning techniques, and highlights the
major open problems that continue to challenge the field.

8.1. Technical Bottlenecks in Adversarial Robustness

A central technical bottleneck in adversarial machine learn-
ing lies in achieving robustness that generalizes across attack
strategies, threat models, and deployment environments. Many
existing defenses are designed under restrictive assumptions,
such as bounded perturbations in specific norm spaces or static
attacker capabilities. While such assumptions simplify analy-
sis, they often fail to capture the diversity and adaptability of
real-world adversaries. As a result, defenses that appear ef-
fective under controlled experimental settings frequently break
down when attackers deviate from assumed threat models or
exploit unforeseen vulnerabilities.

Another major technical challenge stems from the growing
complexity of modern machine learning architectures. Deep
neural networks with millions or billions of parameters, pre-
training pipelines, and fine-tuning stages introduce additional
layers of vulnerability that are difficult to analyze formally.
Robustness guarantees may not transfer across datasets, tasks,
or model architectures, suggesting that many defenses exploit
dataset-specific artifacts rather than fundamental invariances.
These issues are further amplified in multimodal and founda-
tion models, where interactions between modalities introduce
new and poorly understood attack surfaces. Overcoming these
bottlenecks requires new theoretical tools and defense mecha-
nisms that offer robustness guarantees beyond narrowly defined
adversarial settings.

8.2. Methodological Limitations and Evaluation Challenges

Methodological limitations in robustness evaluation repre-
sent another major obstacle to progress in adversarial machine
learning. A significant portion of the literature relies on incom-
plete threat models, limited attack diversity, or non-adaptive
evaluation procedures. Such practices can lead to misleading

23



conclusions about robustness, as attackers in real-world settings
are often adaptive and capable of exploiting defense-specific
weaknesses. Historical failures of defenses based on gradient
obfuscation or input preprocessing underscore the risks of in-
sufficient evaluation rigor.

Although recent efforts have introduced standardized bench-
marks and evaluation platforms, several methodological chal-
lenges remain unresolved. There is still no consensus on how to
model realistic attacker knowledge, how to balance white-box
and black-box evaluations, or how to fairly compare defenses
with fundamentally different assumptions and goals. Moreover,
robustness metrics are often heterogeneous and task-dependent,
making cross-paper comparisons difficult. Addressing these
methodological issues requires the development of unified eval-
uation protocols, stronger adversarial testing practices, and re-
producible pipelines that better reflect real-world adversarial
behavior.

8.3. Data Availability and Realism Challenges

Data-related challenges pose a significant bottleneck for both
adversarial attack research and defense validation. Construct-
ing realistic adversarial datasets is inherently difficult due to the
high cost of data collection and labeling, especially in domains
where expert knowledge is required. Additionally, adversarial
behavior is highly dynamic, making static datasets insufficient
to capture evolving attack strategies. As a result, many studies
rely on simplified or synthetic benchmarks that fail to reflect
real-world operating conditions.

These limitations are further compounded by privacy, legal,
and ethical constraints on data sharing. In sensitive applica-
tion domains such as healthcare, finance, and critical infrastruc-
ture, access to representative datasets is often restricted, limit-
ing empirical evaluation of adversarial threats. This gap be-
tween benchmark datasets and deployment environments can
lead to defenses that generalize poorly in practice. Addressing
these challenges requires new approaches to data generation,
simulation, and sharing that balance realism, privacy preserva-
tion, and reproducibility, as well as domain-aware evaluation
methodologies.

8.4. Practical Deployment Constraints

Beyond algorithmic considerations, practical deployment in-
troduces constraints that are frequently overlooked in adversar-
ial machine learning research. Many state-of-the-art defenses
incur substantial computational overhead, increased inference
latency, or additional memory consumption. These costs may
be acceptable in offline evaluation settings but become pro-
hibitive in real-time or resource-constrained environments such
as edge devices, mobile platforms, or embedded systems. Con-
sequently, highly robust defenses may be impractical for large-
scale deployment despite strong empirical performance.

Integrating adversarial defenses into existing machine learn-
ing pipelines also raises system-level challenges. Models must
be maintained, updated, and monitored over time, and defenses
must remain effective under distribution shifts and evolving ad-
versarial strategies. In safety-critical and regulated domains,

additional requirements such as interpretability, certification,
and compliance further complicate deployment. These prac-
tical constraints highlight a persistent gap between laboratory-
scale robustness research and operational security needs, under-
scoring the importance of designing defenses that are not only
robust but also efficient, maintainable, and deployable in real-
world systems.

8.5. Scalability Issues
Scaling defense mechanisms to large-scale datasets and com-

plex models in a computationally efficient manner remains a
critical challenge. Techniques such as adversarial training, par-
ticularly with strong attacks like Projected Gradient Descent
(PGD) [17], significantly prolong training time and demand
substantial computational resources. Similarly, certified de-
fenses such as randomized smoothing [73] offer formal robust-
ness guarantees but require thousands of Monte Carlo samples
per prediction, rendering them impractical for high-resolution
datasets like ImageNet or time-sensitive applications.

This computational burden is particularly problematic for
real-world systems in domains such as autonomous driving, fi-
nance, or healthcare, where latency and energy constraints are
stringent. High-overhead defenses may not be compatible with
edge deployment or real-time inference requirements. As such,
a key open problem is designing scalable, hardware-aware, and
modular defense techniques that retain robustness without com-
promising throughput, energy efficiency, or model performance
in production environments.

8.6. Transferability of Attacks
One of the most puzzling and dangerous characteristics of

adversarial examples is their transferability across models. Pa-
pernot et al. [120] demonstrated that adversarial inputs crafted
for a surrogate model can often mislead different models trained
on similar or even disjoint datasets. This property enables pow-
erful black-box attacks that require little to no access to the
target model’s internals, posing serious risks in settings where
models are deployed as opaque APIs or proprietary services.

The underlying causes of transferability remain poorly un-
derstood. Factors such as shared decision boundaries, model
overparameterization, and feature alignment are believed to
contribute, but a formal characterization is lacking. Transfer-
ability also appears to vary with task modality (e.g., vision vs.
NLP), data distribution, and training procedure (e.g., pretrain-
ing or fine-tuning). While ensemble-based defenses [81] can
reduce transferability by promoting diversity among models,
they are computationally expensive and not universally effec-
tive. Addressing this open problem requires deeper theoretical
insights and the development of model architectures or training
paradigms inherently resistant to cross-model attacks.

8.7. Defense Robustness
Evaluating the robustness of adversarial defenses remains an

elusive and evolving challenge. Many early defenses, such
as those based on gradient obfuscation or input preprocessing,
were later shown to offer a false sense of security and were
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easily bypassed by adaptive adversaries [119]. These failures
highlight the importance of strong threat models and rigorous,
white-box evaluation procedures. Yet, many published defenses
are only tested against limited attacks or fail to consider adap-
tive scenarios.

Although standardized platforms such as RobustBench have
emerged to facilitate consistent comparisons, the AML com-
munity still lacks consensus on evaluation protocols that reflect
real-world adversaries. A critical need exists for comprehensive
benchmarks, standardized threat models, and reproducible eval-
uation pipelines that include adaptive attacks, black-box scenar-
ios, and domain-specific considerations. Without these, claims
of robustness risk being misleading or overly optimistic.

8.8. Robustness vs Accuracy Tradeoff
One of the most fundamental challenges in adversarial ma-

chine learning is the apparent tradeoff between robustness and
accuracy. Techniques such as adversarial training enhance ro-
bustness by incorporating adversarial examples during training,
but this often leads to reduced accuracy on clean, unperturbed
data [72]. This compromise complicates deployment decisions,
particularly in production systems where even marginal reduc-
tions in accuracy may be unacceptable.

This tradeoff is especially consequential in safety-critical ap-
plications such as healthcare diagnostics or autonomous nav-
igation, where both high accuracy and strong robustness are
simultaneously required. Promising directions to address this
challenge include multi-objective optimization frameworks,
robustness-aware regularization schemes, and hybrid models
that adaptively switch between robust and accurate inference
modes based on input uncertainty.

8.9. Privacy vs Utility
Privacy-preserving methods, particularly differential privacy

(DP), offer formal guarantees against information leakage but
often at the cost of model performance. Abadi et al. [82]
demonstrated that while DP-SGD can limit data exposure, it
also substantially reduces accuracy on standard benchmarks.
This degradation arises from the injected noise and gradient
clipping that are necessary to enforce privacy guarantees.

The tension between privacy and utility is especially acute in
federated learning systems, where model quality, communica-
tion efficiency, and user data confidentiality must be simultane-
ously optimized. Addressing this challenge requires advances
in adaptive noise calibration, privacy accounting techniques
such as Rényi differential privacy, and utility-aware training
strategies that minimize the impact of privacy constraints on
overall performance. Balancing these competing goals remains
an active area of research with high practical relevance.

9. Future Research Directions

To address the persistent challenges in adversarial machine
learning, this section outlines promising avenues for future re-
search. These directions span technical innovations, system-
level designs, and emerging policy considerations.

9.1. Improving Robustness in Real-World Scenarios

While many AML defenses demonstrate efficacy in con-
trolled academic environments, they often fail under real-
world conditions. For example, defenses against physical at-
tacks, such as perturbations to stop signs in autonomous vehi-
cles, must remain effective under varying lighting, angles, and
weather conditions [4].

Future work should prioritize domain-specific robustness tai-
lored to high-stakes sectors like finance, healthcare, transporta-
tion, and critical infrastructure. Online learning and continual
adaptation can help models dynamically respond to evolving
adversarial strategies. Benchmarking efforts should also in-
clude realistic deployment scenarios with environmental noise
and system constraints.

9.2. Mitigating and Understanding Transferability

As discussed earlier, the transferability of adversarial exam-
ples across models remains a key obstacle to security. Adver-
sarial inputs crafted for one model often generalize to others,
regardless of architectural differences or training data [120].

Future research should focus on characterizing the underly-
ing mechanisms that facilitate transferability and developing
defenses that disrupt these commonalities. Promising tech-
niques include randomized model ensembles, adversarial fea-
ture decorrelation, and obfuscation of decision boundaries.
Theoretical frameworks to quantify and bound transferability
would also improve defense design.

9.3. Privacy and Robustness Synergies

Although robustness and privacy are often pursued indepen-
dently, their objectives intersect in many real-world ML sys-
tems. For example, models that are both privacy-preserving
and robust are increasingly needed in sensitive domains such as
medical diagnostics and mobile applications.

Future research should develop unified frameworks that
jointly optimize for both properties. For instance, combin-
ing adversarial training with differential privacy [82] remains
a computationally intensive process, often degrading perfor-
mance. Efficient joint training strategies, adaptive noise injec-
tion, and theoretical trade-off analysis could lead to more prac-
tical solutions.

9.4. Scalable Defense Mechanisms

Scalability remains a fundamental requirement for deploy-
ing AML defenses in real-world applications. Methods such as
randomized smoothing [73] provide certified robustness but are
computationally expensive due to extensive sampling.

To improve scalability, researchers can explore sparsity-
inducing training, low-rank model compression, and
lightweight defense layers amenable to hardware acceleration.
In federated learning contexts [84], communication-efficient
and distributed defenses are essential. Designing decentralized
protocols with adversarial robustness guarantees remains a
critical open problem.
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9.5. Reinforcement and Federated Learning Models
Reinforcement learning (RL) systems introduce unique ad-

versarial vulnerabilities because agents continuously interact
with dynamic environments. Attackers can manipulate reward
signals, observations, or transition dynamics to corrupt pol-
icy learning, leading to unsafe or suboptimal behaviors. Such
manipulations, including reward shaping and policy induction,
undermine the reliability of autonomous decision-making in
applications like robotics and network control. Future work
should focus on secure policy learning, robust environment
modeling, and verification frameworks that ensure resilience
against adversarial perturbations during training and deploy-
ment.

Federated learning (FL) poses distinct challenges arising
from decentralized collaboration among clients with local data.
While FL enhances privacy by keeping data on devices, it re-
mains vulnerable to model poisoning, backdoor insertion, and
gradient-based inference attacks. Malicious clients may submit
crafted updates to bias the global model or leak private infor-
mation through gradients. Emerging defenses, such as robust
aggregation, anomaly detection, and secure multi-party compu-
tation, help mitigate these risks. However, achieving a balance
among robustness, privacy, and communication efficiency re-
mains an open research problem.

9.6. Foundation and Large Language Models
The emergence of foundation models, including large lan-

guage and vision-language models, introduces a new adversar-
ial landscape that differs markedly from traditional classifica-
tion settings. These systems operate in open-ended, instruction-
driven environments, creating novel vulnerabilities such as
prompt injection, data extraction, and adversarial fine-tuning.

Prompt Injection and Instruction Manipulation. Attackers
can craft malicious prompts to override alignment constraints,
induce policy violations, or bypass safety filters. Such prompt-
injection and jailbreak attacks exploit the model’s reliance on
contextual instructions rather than fixed inputs, exposing weak-
nesses in rule-based alignment and content moderation.

Data Extraction and Adversarial Fine-Tuning. Models
trained on massive, uncurated datasets are prone to memorizing
sensitive information, allowing adversaries to extract personal
or proprietary data through targeted queries. Meanwhile, adver-
sarial fine-tuning enables attackers to implant hidden behaviors
or backdoors during downstream adaptation, threatening model
reliability and trustworthiness.

Addressing these challenges requires combining robustness,
privacy, and alignment strategies, such as differential privacy,
provenance tracking, and continuous red-teaming, to build re-
silient foundation models. As these models increasingly un-
derpin critical applications, adversarial robustness at this scale
represents a key frontier for future AML research.

9.7. Ethical and Regulatory Frameworks
The societal implications of AML are far-reaching. As ad-

versarial threats can influence critical systems such as medical
diagnostics, transportation, and content moderation, ethical and

regulatory considerations become essential. Dual-use risks, lia-
bility for mispredictions, and access equity are major concerns.

Interdisciplinary collaboration among machine learning re-
searchers, legal scholars, ethicists, and policymakers is needed
to formulate actionable guidelines. Regulatory frameworks
such as the EU AI Act and U.S. FDA guidance may soon in-
corporate robustness requirements, underscoring the urgency of
developing AML-aware compliance standards.

9.8. Integrating Adversarial Robustness with Trustworthy AI

Adversarial robustness should be studied not in isolation but
as a key pillar of trustworthy AI, alongside fairness, explain-
ability, accountability, and certification. Robust models that
fail to maintain fairness across demographic groups or lack in-
terpretability may still be unsuitable for deployment in safety-
or ethics-sensitive domains. Similarly, certification frameworks
for AI systems, such as robustness verification, uncertainty
quantification, and transparency audits, are becoming increas-
ingly intertwined with adversarial defense research.

Future work should focus on developing unified frame-
works that jointly consider robustness and trustworthiness ob-
jectives. For instance, explainable robustness techniques could
help identify which features contribute most to adversarial vul-
nerability, thereby improving interpretability and auditability.
Fairness-aware adversarial training can mitigate bias amplifi-
cation under attack conditions. Moreover, integrating robust-
ness certification into standardized trustworthy AI benchmarks
would enable regulators and practitioners to assess system reli-
ability under both ethical and adversarial dimensions. Progress
in this direction will help bridge the gap between technical de-
fenses and societal expectations for secure, fair, and account-
able AI systems.

10. Conclusions

Adversarial machine learning has emerged as a critical field
at the intersection of machine learning and security, reveal-
ing fundamental vulnerabilities that challenge the integrity and
trustworthiness of AI systems. Since the initial discovery of ad-
versarial examples, the field has rapidly evolved to encompass
a broad range of attack vectors, defense strategies, theoretical
foundations, and practical considerations. As AI continues to
permeate safety-critical domains, the need to understand and
mitigate adversarial risks has become increasingly urgent.

This survey has provided a comprehensive overview of the
AML, covering core attack methodologies, diverse defense
mechanisms, and emerging applications across sectors such as
healthcare, autonomous systems, finance, and cybersecurity.
Through case studies and empirical evidence, we have illus-
trated the real-world impact of adversarial threats and high-
lighted the growing importance of deploying scalable, privacy-
preserving, and robust machine learning models.

Despite significant progress, adversarial machine learning
still faces open challenges, including the scalability and deploy-
ability of defenses, the persistent issue of attack transferabil-
ity, and the inherent trade-offs among robustness, accuracy, and
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privacy. Addressing these challenges requires interdisciplinary
collaboration and sustained innovation across technical, ethical,
and regulatory fronts. As AI continues to expand into emerging
paradigms such as reinforcement learning, federated learning,
and foundation models, the development of secure, adaptive,
and trustworthy learning systems becomes increasingly critical.

Looking ahead, the continued advancement of adversarial
machine learning will depend on progress along several key di-
mensions. A major challenge lies in developing robustness that
generalizes beyond narrowly defined threat models and remains
effective against adaptive and unforeseen adversaries. At the
same time, improving evaluation practices under realistic attack
assumptions and bridging the gap between academic bench-
marks and deployment environments are essential for establish-
ing trustworthy robustness claims. Emerging directions such as
adversarially resilient decentralized learning, robust reinforce-
ment learning, and secure foundation models present both new
opportunities and urgent challenges. Progress along these di-
rections will be crucial for translating advances in adversarial
machine learning from controlled research settings into reliable,
secure, and trustworthy AI systems deployed in the real world.
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