
SECDINT: Preventing Data-oriented Attacks via
Intel SGX Escorted Data Integrity

Dakun Shen⇤, Tao Hou†, Zhuo Lu‡, Yao Liu‡, and Tao Wang§
⇤Zhejiang Lab, Hangzhou, ZJ, PRC, shendakun@zhejianglab.com

†Texas State University, San Marcos, TX, USA, taohou@txstate.edu
‡University of South Florida, Tampa, FL, USA, {zhuolu@, yliu@cse.}usf.edu

§University of North Carolina at Charlotte, Charlotte, NC, USA, twang27@uncc.edu

Abstract—Data-oriented attacks with the intent to corrupt crit-

ical memory data without violating Control-flow Integrity (CFI)

pose significant threats to legitimate program execution. Existing

mitigations predominantly rely on software-based memory safety

measures to ensure critical data integrity, a solution often asso-

ciated with elevated performance overhead and susceptibility to

intricate attack techniques. In this paper, we present a CPU level

data integrity design, named Intel SGX Escorted Data Integrity

(SECDINT), to automatically protect sensitive variables against

data-oriented attacks. Our design can achieve the data integrity

of sensitive variables via SGX enforced isolation in binaries. We

evaluate SECDINT on real-world applications. The results reveal

that SECDINT can effectively identify sensitive variables, enforce

data integrity, and prevent data-oriented attacks. Comparative

analysis with existing software-based strategies (e.g., 103% run-

time overhead in Data-flow Integrity, 116% in SoftBound with

CETS), showcased SECDINT’s remarkable capability in drasti-

cally reducing overhead to as low as 20.1%.

Index Terms—Data-oriented Attacks, Data Integrity, Data-flow

Integrity, Intel SGX, Data Enclave

I. INTRODUCTION

With the wide deployment of Control-flow Integrity (CFI),
traditional memory corruption attacks aimed at hijack the
control flow have become increasingly difficult. Nevertheless,
attackers continue to seek alternative ways to exploit memory
vulnerabilities to achieve malicious goals. Consequently, data-
oriented attacks [16] have emerged. These attacks aim to
manipulate non-control data (e.g., a data variable or pointer
that does not contain the target address for a control transfer)
to subvert a program’s normal execution. Data-oriented attacks
can be equally powerful and effective as control-flow attacks.
The attacker is able to tamper with application-specific data
to cause significant damage, such as information leakage [9],
[15], user privilege escalation [12], [16], and arbitrary code
execution [9]. Remarkably, the exploited program could still
follow the Control-flow Graph (CFG), which makes the attack
difficult to combat.

Develop effective defense strategies that can contain data-
oriented attacks is urgent. These strategies should be tailored
to guarantee the data integrity of sensitive variables in a
vulnerable program’s memory. Recent developments of such
defenses include Data-flow Integrity (DFI) [6], SoftBound
[21], YARRA [29], HardScope [25], and PrivWatcher [8].
However, these defense strategies meet major limitations:

• These existing strategies heavily rely on software-based
mechanisms (e.g., Shadow Stack [3], SafeStack [7], and
Safe-Region [8]) to enforce memory isolation and data
integrity. They protect the sensitive data from being
altered by limiting write access or storing a verifiable
replica. Notably, these strategies either suffer from high
performance overhead without hardware acceleration or
can only be deployed in very limited usage scenarios [10].
More importantly, these strategies can be circumvented
by advanced attacks due to the inherent vulnerabilities of
software-based mechanisms [10].

• Identifying the sensitive variables vulnerable to data-
oriented attacks is difficult. Usually, this identification
requires specific domain knowledge and must be done
manually. This may impose a significant burden for the
deployment of these strategies. Additionally, most of
these approaches cannot work for COTS binaries, while
requiring performing on the source code of a program.

These drawbacks motivate us to develop a more appropriate
defense strategy from the hardware perspective. Towards this,
we propose a practical system, named SGX Escorted Data
Integrity (SECDINT), to defend against data-oriented attacks.
Specifically, SECDINT applies Intel SGX technology [18] to
create a memory enclave in such a way that data-oriented
attacks cannot use traditional memory corruption methods to
tamper with sensitive variables. It can automatically identify
sensitive data in a given binary and move such data into the
SGX enclave for protection. SECDINT also aims to optimize
performance, moving only the most crucial variables to the
SGX enclave to reduce overhead. SECDINT offers these
advantages:

• Lightweight: SECDINT can significantly reduce the per-
formance overhead when enforcing data integrity with the
assistance of Intel SGX.

• Ubiquitous: SECDINT can be deployed to any systems
equipped with Intel SGX enabled processors.

• Automatic: SECDINT is an automatic approach to en-
force data integrity without requiring domain knowledge.

• Source-Code-Free: SECDINT can be performed on bina-
ries to protect sensitive variables from being corrupted.

SECDINT is composed of three modules: (i) the analysis

module, (ii) the sensitive variable identification module, and
(iii) the instrumentation module. To work, SECDINT first
analyzes a target binary and constructs its basic blocks,
Control-flow Graph (CFG), and Data-flow Graph (DFG) in the
analysis module. Then, the identification module will identify
sensitive variables that are vulnerable to data-oriented attacks.
Finally, the instrumentation module instruments the target
binary to protect the identified sensitive variables using Intel
SGX. The instructions for enclave-related operations are also
instrumented in this step.

In the implementation of SECDINT, we encounter the
following challenges and propose corresponding techniques to
address them.

(1) It’s challenging to effectively identify the sensitive
variables. To address this challenge, we comprehensively in-
vestigate data-oriented attacks [12], [9], [16], [5], [17] to find
the key factors contributing to the success of such exploits.
We find that three types of variables are sensitive: i) the con-
ditional branching data, ii) the arguments that will be passed
to system or library function calls, and iii) their dependent
data. By protecting these three types of sensitive variables
from corruption, the threat of data-oriented attacks can be
significantly contained. Furthermore, SECDINT is designed
to be customizable, allowing the system can be extended by
adding more types of sensitive variables based on needs.

(2) It’s non-trivial to optimize the performance of
SECDINT. Our goal is to reduce the number of sensitive
variables to be protected while maintaining the same level of
security assurance. We have designed an optimization method
that can further identify the crucial sensitive variables origi-
nating from or arithmetically derived from untrusted sources
(e.g., network sockets and unprivileged users). To achieve this
purpose, SECDINT integrates dynamic taint analysis [23] to
identify all variables that originate from untrusted sources.

We aim to implement SECDINT as a practical system. In
addition to the aforementioned novel designs, we have also
meticulously chosen multiple state-of-the-art binary analysis
techniques to achieve the best possible development outcomes.
In the analysis module, we utilize ANGR [30] to extract
the CFG and DFG, while employing INTEL PIN [31] for
dynamic taint analysis. In the instrumentation module, we
make use of UROBOROS [32] to disassemble stripped binaries
and generate reassemble-able assembly code. During the eval-
uations of SECDINT, we conduct testing on a range of real-
world applications. The results demonstrate that SECDINT
effectively identifies sensitive variables, enforces data integrity,
and thwarts data-oriented attacks. Additionally, we assess
the performance of SECDINT. In comparison to existing
software-based strategies (e.g., 103% run-time overhead in
data-flow integrity [6], 116% in SoftBound with CETS [21]),
SECDINT substantially reduce the overhead to as low as
20.1%.

II. MOTIVATION AND SYSTEM OVERVIEW

In this section, we provide a brief introduction to the back-
ground and our motivation for protecting sensitive variables

to defend against data-oriented attacks.We then present an
overview of SECDINT.

A. Data-oriented Attacks
Traditional control data attacks manipulate a program’s con-

trol data (e.g., return addresses or function pointers) to hijack
or redirect the target program’s control flow [9]. In contrast,
data-oriented attacks corrupt only data, without affecting code
pointers. These attacks also follow legitimate paths on the
program’s CFG, rendering existing control-related defenses
ineffective [17]. Nonetheless, data-oriented attacks can be as
powerful and effective as control-flow attacks, resulting in
significant damages, including information leakage [9], user
privilege escalation [12], [16], and arbitrary code execution
[9].

Code 1 provides a typical example of data-oriented attacks.
The code is abstracted from a vulnerability in SSH [33] that
can be exploited to launch a user privilege escalation attack.
In this example, the HandlePacket function on line 4 does
not validate the packet’s length and can be manipulated to
write over 1000 bytes to packet when receiving input from
the network. By utilizing this exploit, an attacker can overwrite
the authenticated variable, circumventing the conditional
check on line 5 and gaining access to the processed packet.

1 i n t a u t h e n t i c a t e d = 0 ;
2 c h a r p a c k e t [1 0 0 0] ;
3 w h i l e (! a u t h e n t i c a t e d)
4 a u t h e n t i c a t e d = H a n d l e P a c k e t (p a c k e t) ; / / b u f f e r

o v e r f l o w
5 i f (a u t h e n t i c a t e d)
6 P r o c e s s P a c k e t (p a c k e t)

Code 1. Vulnerable code snippet.

B. Intel SGX Escorted Data Integrity
To mitigate data-oriented attacks, various software-level

defenses have been developed [6][21][29][25][8]. However,
these defenses mechanisms often necessitate comprehensive
software-level memory safety enforcement to ensure the in-
tegrity of sensitive data, resulting in a high performance
overhead. Moreover, relying solely on software-based isolation
strategies can render systems vulnerable to advanced attacks,
as these approaches are susceptible to exploits and breaches
inherent to software vulnerabilities [10]. Additionally, they
require knowledge of a program’s source code to implement
protection against data-oriented attacks. These challenges drive
our motivation to design an effective protection of sensitive
variables, focusing on defending against data-oriented attacks
from a hardware perspective.

Intel SGX offers a set of CPU instructions capable of
establishing isolated regions (enclaves) for code and data
within user applications. This feature makes it an ideal solution
for ensuring the data integrity of sensitive variables through
hardware-level memory isolation. Our objective is to auto-
matically instrument SGX code into binaries for safeguarding
sensitive variables against data-oriented attacks. With this goal
in mind, we propose SECDINT.

To circumvent the authentication and manipulate the packet
processing in Code 1 , an attacker can exploit the buffer
overflow vulnerability in HandlePacket to tamper with
the authenticated variable. The corresponding assembly
code for Code 1 is provided in Code 2, indicating that the
authenticated variable resides at -0x3f4(%rbp), and
the packet variable begins at -0x3f0(%rbp) within the
binary. If we can identify -0x3f4(%rbp) as conditional
branching data, we can secure it from corruption by transfer-
ring this variable into the SGX enclave. Additionally, we must
modify the read/write instructions related to -0x3f4(%rbp),
such as lines 1 and 12 in Code 2, to ensure the correct
execution of the binary program.

1 movl $0x0 , −0 x3f4 (% rbp) # a u t h e n t i c a t e d = 0
2 jmp . BB1 #jump t o w h i l e l o o p
3 . BB2 :
4 movl −0 x3f0 (% rbp) ,% r a x #move p a c k e t t o %r a x
5 movq %rax , %r d i
6 c a l l q H a n d l e P a c k e t # b u f f e r o v e r f l o w
7 movl %eax , −0 x3f4 (% rbp) # r e s u l t −> a u t h e n t i c a t e d
8 . BB1 :
9 cmpl $0x0 , −0 x3f4 (% rbp) # check a u t h e n t i c a t e d

10 j e . BB2 #jump t o w h i l e l o o p
11 cmpl $0x0 , −0 x3f4 (% rbp) # check a u t h e n t i c a t e d
12 j e . BB3
13 movl $0x0 ,% eax
14 c a l l q P r o c e s s P a c k e t # c a l l P r o c e s s P a c k e t ()
15 . BB3 :
16 movl $0x0 ,% eax

Code 2. Vulnerable assembly code snippet.

C. Threat Model
We establish a threat model that involves a potent adversary

possessing full control over the data memory within the target
program. This encompassing scenarios includes buffer over-
flows and other memory corruption vulnerabilities, which have
the potential to result in data memory corruption. Additionally,
state-of-the-art mechanisms, such as CFI [1], DEP [20], and
ASLR [26], have been adopted to effectively defend against
control-data attacks. Our adversary model is in line with
conventional run-time attack scenarios and resonates with the
framework elucidated by Hu et al. in their analysis of DOP
attacks [17]. Also, side-channel attacks against Intel SGX are
out of the scope of this paper.

D. SECDINT
SECDINT is an automated tool designed to search for sen-

sitive variables within binaries and instrument SGX-enabled
safeguards for such data. The architecture of SECDINT is
illustrated in Figure 1. This framework comprises three main
modules in SECDINT: i) the analysis module, ii) the sensitive
variable identification module, and iii) the instrumentation
module.

As shown in Figure 1, SECDINT initially analyzes a target
binary, constructing its basic blocks, CFG and DFG within the
analysis module. Subsequently, the identification module iden-
tifies sensitive variables that are susceptible to data-oriented
attacks. Moving forward, the instrumentation module instru-
ments the target binary by relocating the identified data into the

Sensitive Variable

Identification

Analysis

Binary

AutoEnclave

Instrumentation

Binary

with SGX

Memory

-0x3f4(%rbp)

-0x3f8(%rbp)

…

Enclave

-0x3f4(%rbp)

-0x3f8(%rbp)

…

Write

Read

Write

Read

Fig. 1. System architecture of SECDINT.

SGX enclave, thereby ensuring protection. Furthermore, this
module creates the enclave-related code to store and operate
the sensitive variables.

III. SENSITIVE VARIABLE IDENTIFICATION

The analysis module and the identification module within
SECDINT function to analyze the assembly code of a binary,
facilitating the identification of sensitive variables. In this
section, we present the algorithms employed for sensitive
variable identification.

A. Sensitive Variables
It is necessary to identify sensitive variables that are vulner-

able to memory corruption attacks within binaries. In order to
limit the cost of communications between the binary and the
enclave, the set of sensitive variables should be kept minimal
while encompassing all data that is vulnerable to data-oriented
attacks. Based on our investigation of exiting data-oriented
attacks in literatures [12], [9], [16], [5], [17], [2], we identify
three types of sensitive variables: i) conditional branching data,
ii) parameters passed to system and library function calls, and
iii) their dependent data.

1) Conditional branching data: Branch instructions are
treated as a lifeline of a program, as they decide the pro-
gram execution path according to the variety of conditional
branching data. One of the most powerful data-oriented at-
tacks is designed to corrupt conditional branching data or
variables associated with them. This manipulation redirects
the program’s control flow towards arbitrary locations. Code
1 is an example of a privilege escalation attack, wherein the
conditional variable authenticate is tampered to grant
authentication for the received packet. Thus, isolating such
data in a more secure location will significantly reduce the
risk of data-oriented attacks.

1 s t r u c t passwd { u i d t pw uid ; . . . } *pw ; . . .
2 i n t u i d = g e t u i d () ;
3 pw−>pw uid = u i d ;
4 . . . / / f o r m a t s t r i n g e r r o r
5 vo id p a s s i v e (vo id) {
6 . . .
7 s e t u i d (0) ;
8 s e t u i d (pw−>pw uid) ;
9 . . . }

Code 3. An example of data-oriented attacks.

2) Parameters passed to system and library function calls:
Another type of sensitive variables is parameters passed to
system and library function calls. System calls like setuid

and sys_fchown, governed by the kernel, manage system
and hardware resources. Similarly, library function calls like
printf and strcpy are also indispensable to process
necessary demands of both applications and users. Corrupting
the content of those arguments can lead to serious damage,
such as privilege escalation and information leakage. Code 3
demonstrates a working exploit fashioned after the WU-FTPD
server code [9]. In the exploit, by making use of a format
string error, an attacker tampers the parameter pw->pw_uid
within the setuid system call, resulting in the elevation of
user privilege.

3) Dependent data: Only isolating conditional branching
data and function arguments is not enough to guarantee
the integrity of sensitive variables. Consider Code 3 as an
example: the variable pw->pw_uid is passed as a parameter
to the system function setuid() on line 10. Before variable
pw->pw_uid is used, it is assigned by the variable uid on
line 4. Thus, uid is the dependent data for pw->pw_uid,
as the value of pw->pw_uid is directly related to uid. An
attacker can corrupt the dependent variable uid to indirectly
alter the sensitive variable pw->pw_uid. Therefore, in order
to guarantee the integrity of conditional branching data and
critical function parameters, it is essential to extend protection
to all data upon which they depend.

B. Sensitive Variable Identification

Schemes utilizing source code have inherent advantages in
correctly identifying vulnerable variables due to the richer
context they provide. In contrast, when performing analysis
on binaries, variables are denoted by an address expression
such as [base+ index⇥ scale+ offset], which makes them
challenging to identify.

To solve this issue, we have designed an identification
method aimed at automatically locating and designating the
three types of sensitive variables within binaries. We assume
that given a target binary file f , the analysis module in
SECDINT generates a set of basic blocks denoted by B,
a CFG denoted by G, and a DFG denoted by D. A basic
block b 2 B consists of a sequence of instructions with no
branches except in the entry or the exit. By taking B and D as
inputs, the identification method produces a set of locations of
sensitive variables S in the target binary file as an output. The
identification method is constructed by multiple parts, which
are demonstrated in the following.

a) Identify conditional branching data.: The basic idea
is to check each basic block and identify data associated with
comparison and branch instructions. Specially, from the given
set of basic blocks B, SECDINT first locates the branch
instructions, such as je and jne, in each basic block b in
set B. If a branch instruction is found in the basic block b,
currentInt is pointed to the conditional instruction cmp that
is associated with the branch instruction. Then the operation
instruction currentInt is analyzed to check whether the

operand of this instruction is a variable, such as %rbp and
%rsp. If the operand is a variable denoted by d, the memory
location of d is recorded in the output set S. If the operand
is a regular register, which indicates the value in the register
is passed from previous instructions, SECDINT recursively
analyzes each previous instruction until reaching the beginning
of the function or encounters an instruction that assigns the
register from a variable.

b) Identify parameters in system and library function
calls.: To identify the parameters, our method first locates
the call operation in each basic block and then identifies
all corresponding data according to the operation’s calling
convention. Our approach focuses on protecting Linux x86-
64 binaries with the calling convention that is specified by
the System V ABI. In this architecture, parameters of the
integer, boolean, enumerated, or pointer type in a function
call are passed in six registers rdi, rsi, rdx, rcx, r8,
and r9 in order. Float and double types are transferred in
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, and xmm7

registers in order. Additional parameters are stored on the
stack [13]. When identifying the parameters, our approach first
identifies a system or library function call. Next, by matching
the type, the number, and the order of the data of this function
to the corresponding positions in the calling convention, our
approach extracts the parameters in the specific function call.

During the identification process, one issue to be noted
is how to handle indirect calls such as function pointers. A
function can be called indirectly through a register instead
of an identifier, thus it is difficult to identify which function
is being called by static analysis. To address this issue, our
approach recovers the procedure linkage table (PLT) from
the target binary. The PLT contains absolute addresses for all
system and library function calls that are involved in the target
binary. Therefore, by comparing the calling convention of the
function pointer with each calling convention of the function
in the PLT, we can identify which function is being called
indirectly. If a function pointer corresponds to one or more
functions within the PLT, the parameters linked to this function
pointer are deemed sensitive variables in our methodology. In
cases where a function pointer does not align with any function
within the PLT, our approach interprets this function as a user-
defined function and disregards it.

c) Identify dependent data.: To identify the dependent
data, SECDINT recursively extract all dependent data by ana-
lyzing the context-sensitive DFG [30]. Specifically, SECDINT
recursively takes each variable k in set S as an input and
outputs the updated set S with all data that k depends on.
We first examine whether k has been recorded before. If it is
not in set S, SECDINT updates set S with variable k, which
is further passed as a parameter to function processDFG.
Function processDFG analyzes the DFG and outputs all
data that k depends on into set U . Next, each variable in set
U is examined by recursive manner. If the data in set U is
never recorded, it will be analyzed recursively. Therefore, all
dependent data associated with conditional branching data and
critical function parameters can be identified and recorded.

IV. SECDINT ENFORCEMENT VIA BINARY
INSTRUMENTATION

With all sensitive variables identified, the instrumentation
module of SECDINT automatically instruments the binary to
protect these sensitive variables. In this section, we present
the details of the binary instrumentation component module
in SECDINT.

A. Binary Instrumentation

The binary instrumentation module in our approach rewrites
binaries in a way that they are forced to write and read
sensitive variables to/from the protected enclave memory. We
adopt UROBOROS [32] as the tool for binary instrumentation.
UROBOROS can automatically disassemble stripped binaries
and generate reassemble-able assembly code, which makes it
suitable to our approach. By adopting UROBOROS, we are
able to directly work on the assembly code of binaries to add
Intel SGX instructions and modify all operations associated
with sensitive variables. Moreover, since the assembly code ex-
tracted from binaries can be reassembled back to executables,
it is convenient to link binaries with the Intel SGX libraries
during the reassembly process [14].

Figure 2 shows the overall binary instrumentation design.
The left-hand side of this figure is the architecture of an ELF
binary file. The right-hand side shows what information and
which part of the binary file are instrumented. Particularly,
three sections in the binary file need to be modified. The
.text section houses all major functions for the enclave
operations, such as enclave initialization and data transaction.
The .bss section and the .rodata section hold the enclave
parameters, such as global variables and local variables.

Binary file

ELF header

Program header table

.section .text

.section .bbs

.section .rodata

……

main

Enclave functions

create

destroy

verify

Enclave initialization……

…… Critical data
transaction

Enclave
global variables

Enclave
local variables

Fig. 2. Binary instrumentation.

The .text section contains executable code. Therefore,
additional functions need to be instrumented into this section
in order to access to the enclave memory from the executable.
In this procedure, the first step is to initialize the enclave at
the beginning of the execution. Intel demonstrates how to
write the enclave initialization function in C++. Since our
approach directly works on assembly code, we translate the
initialization function to assembly code and add it to the
.text section as a regular function. A function call is added

at the beginning of the execution so as to call the initializa-
tion function. Second, all instructions which operate sensitive
variables need to be instrumented. Specificlly, all write and
read operations associated with sensitive variables are replaced
with corresponding enclave functions. These functions call the
enclave functions that are defined in the enclave.cpp file
to write or read sensitive variables to/from the enclave. Third,
global and local variables, which are used by the enclave, are
instrumented into the .bss section and .rodata section,
respectively. The global variables include a global enclave ID
and a global enclave handle pointer. These two variables are
used to communicate with the enclave. The local variables
contain the enclave debug information.

B. Sensitive Variable Type Construction

Our approach moves all sensitive variables from binaries
into enclave memory to gain a high-level protection. Intel
enclaves are written in C/C++ code, therefore types of sen-
sitive variables need to be recovered in order to correctly
initialize and store them in the enclave memory. However,
re-constructing data type in a binary without source code is
not straightforward, because high-level data types are typically
stripped by the compiler during the compilation process. Since
all data is decoded into binary code represented by 1 and 0
when they are processed in registers at the lowest level of
a machine, all sensitive variables can be treated as integers
(at C/C++ code level) in our approach when creating enclave
memory for them.

C. Variables on the Heap

The size of a variable allocated on the heap can be arbitrary,
since it may be created at run time. This makes it difficult to
get the correct size of the blocks on the heap. To address
this issue, instead of moving the entire buffer allocated on the
heap into the enclave, we first record all variables allocated
on the heap with an index. When this variable is written into
the heap, the binary value of this variable is also stored into
the enclave. Correspondingly, when this variable is read, other
than reading it from the heap, the process is forced to load
the variable from the enclave by matching its index.

Considering Code 4 as an instance, part (a) shows that
a variable is allocated on the heap with size 0x400 by
function malloc. A pointer -0x8(%rbp) is used to point
to this variable, which is later assigned by the library function
fread(). Part (b) is the instrumentation code corresponding
to part (a). After the variable on the heap is assigned on line
10, this variable is also stored into the enclave for protection.
Part (c) shows that the same variable is read from the heap
by using pointer -0x8(%rbp) and is further passed into
printf function. Part (d) demonstrates the corresponding
instrumentation code for Part (c). Instead of loading data from
the heap, an effective address in register %rax is copied in
the pointer -0x8(%rbp) by instruction leaq on line 4. The
effective address in register %rax is further used to point to
the value loaded from the function enreadV9, which loads
variable from the isolated enclave to the outside.

1 . . . | 1 . . . | 1 | 1 . . .
2 mov $0x400 ,% e d i | 2 mov $0x400 ,% e d i | 2 | 2 # Save s t a t e s
3 c a l l q m a l lo c | 3 c a l l q m a l l o c | 3 | 3 #mov −0x8(% rbp) ,% r c x
4 mov %rax , −0x8(% rbp) | 4 mov %rax , −0x8(% rbp) | 4 . . . | 4 l e a q −0x8(% rbp) ,% r a x
5 . . . | 5 . . . | 5 mov −0x8(% rbp) ,% r a x | 5 movq %rax ,% r c x
6 mov −0x8(% rbp) ,% r a x | 6 mov −0x8(% rbp) ,% r a x | 6 mov %rax ,% r s i | 6 l e a q g l o e d i (% r i p) ,% r a x
7 mov %rdx ,% r c x | 7 mov %rdx ,% r c x | 7 mov $S 0x400 ,% e d i | 7 movq (% r a x) ,% r a x
8 . . . | 8 . . . | 8 mov $0x0 ,% eax | 8 movq %rcx ,% rdx
9 mov %rax ,% r d i | 9 mov %rax ,% r d i | 9 c a l l q p r i n t f | 9 movq %rdx ,% r s i

10 c a l l q f r e a d | 10 c a l l q f r e a d | 10 . . . | 10 movq %rax ,% r d i
11 . . . | 11 # Save s t a t e s | 11 | 11 c a l l q enReadV9
12 | 12 mov −0x8(% rbp) ,% r a x | 12 | 12 # r e s t o r e s t a t e s
13 | 13 mov (% r a x) ,% rdx | 13 | 13 l e a q −0x8(% rbp) ,% r a x
14 | 14 l e a q g l o e d i (% r i p ,% r a x) | 14 | 14 mov %rax ,% r s i
15 | 15 movl %edx ,% e s i | 15 | 15 mov $S 0x400 ,% e d i
16 | 16 movl %rax ,% r d i | 16 | 16 mov $0x0 ,% eax
17 | 17 c a l l q enSaveV9 | 17 | 17 c a l l q p r i n t f
18 | 18 # r e s t o r e s t a t e s | 18 | 18 . . .

(a) w r i t e t o t h e heap (b) w r i t e t o t h e e n c l a v e (c) r e a d from t h e heap (d) r e a d from t h e e n c l a v e

Code 4. An example of the instrumentation method for protecting critical data transactions from the heap. Sensitive variables are marked in red.

V. PERFORMANCE OPTIMIZATION

SECDINT remains functional even when tasked with pro-
tecting a comprehensive range of variables within a program.
However, it’s essential to consider the trade-off introduced by
the fact that accessing data in enclave memory is significantly
slower – approximately 300 times – compared to accessing
data in regular memory. To optimize the performance of
SECDINT, an intuitive approach involves the further refine-
ment of sensitive variables, thereby reducing the size of the
enclave. To achieve this optimization, we have designed a
method that exclusively isolates imperative sensitive variables
that are influenced by data originating from or derived through
arithmetic operations involving untrusted sources – comprising
network sockets and unprivileged users. In pursuit of this
objective, we apply dynamic taint analysis [23] to label all
data originating from network sockets and unprivileged users
(i.e., from stdin or files), and track program execution to detect
the propagation of these tainted data. Specifically, to perform
dynamic taint analysis, we created a Intel Pin tool [31] that
instruments the binary to track the flow of untrusted sources
as it moves through the program. The tool identifies sources of
tainted data, propagates the taint information through instruc-
tions, and analyzes how it interacts with program execution.
The tool generates outputs or logs indicating where tainted
data goes and how it affects the program. This process is
conducted separately from the enclave environment and is
removed upon completion. Consequently, this process does not
compromise enclave security.

Figure 3 demonstrates an example of this optimization
process. It shows a partial CFG generated from Code 2. The
-0x3f0(%rbp) variable in the BB3 block is tainted as it
comes from a network socket. Therefore, the BB3 and its
parent blocks, BB0 and BB2, are identified as the field that are
under the influence of an untrusted source. Sensitive variables
on these blocks should be isolated for protection. In this
case, the -0x3f4(%rbp) and -0x18(%rbp) variables are

selected. Other sensitive variables, such as the -0x10(%rbp)
variable in the BB5 block, are excluded.

mov $0x0, -0x3f4(%rbp)
…
mov %rax, -0x18(%rbp)

cmpl 0x0, -0x3f4(%rbp)

mov -0x3f0(%rbp), %rax
movq %rax, %rdi
callq HandlePacker
mov %eax, -0x3f4(%rbp)

!!"

mov %rax, -0x8(%rbp)
!!#!!$

!!%

mov %rax, -0x10(%rbp)

!!&

Fig. 3. Sensitive variable refinement. Sensitive variables are marked in red.
Solid boxes represent the blocks under the influence of untrusted sources.

VI. EVALUATIONS

We prototype SECDINT for x86-64 ELF binaries on the
Ubuntu 16.04 64-bit system. Multiple state-of-the-art binary
analysis techniques are integrated in our approach. In the
analysis module, we adopt ANGR [30] to provide the CFG
and DFG constructions and INTEL PIN [31] to taint sensitive
variables. In the instrumentation modules, UROBOROS [32]
is employed to disassemble stripped binaries and generate
reassemble-able assembly code. By combining OBJDUMP and
UROBOROS, our approach is able to analyze a target binary
and provides an instrumented assembly code with Intel SGX
enabled which can be further reassembled back to the binary.

In this section, we conducted an evaluation of SECDINT
focusing on the accuracy of sensitive variable identification ,
the efficiency of instrumentation, and its efficacy in countering
data-oriented attacks. Our evaluation used two collections of
binaries: (1) the GNU core utilities, referred as COREUTILS,

cat
cp du ls m

kdir

m
v

od printf

ptx
realpath

rm
dir

seq
split

stat
stdbuf

stty
touch

truncate

vdir
w
ho

0

100

200

300

400

500

600
N

u
m

b
e
r

o
f
cr

iti
ca

l d
a
ta

 id
n
e
tif

ie
d

Critical data identified
Critical data used

Fig. 4. COREUTILS identified sensitive variables.

bzip2

grom
acs

h264ref

hm
m

er

lbm
libquantum

m
cf

m
ilc

perlbench

sjeng

sphinx3

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f
cr

iti
ca

l d
a
ta

 id
n
e
tif

ie
d

Critical data identified
Critical data used

Fig. 5. SPEC identified sensitive variables.

cat
cp du ls m

kdir

m
v

od printf

ptx
realpath

rm
dir

seq
split

stat
stdbuf

stty
touch

truncate

vdir
w
ho

0

100

200

300

400

500

600

F
ile

 s
iz

e
 (

K
B

)

Base
AutoEnclave

Fig. 6. COREUTILS space overhead.

including 100 binary utilities for basic file, shell and text
manipulation. (2) the C benchmarks from the SPEC CPU
benchmark package [11]. Furthermore, we implemented mul-
tiple data-oriented attacks to evaluate the protection ability of
SECDINT.

A. Sensitive Variable Identification Correctness
To measure the correctness of the sensitive variable iden-

tification, we compared the sensitive variables identified by
SECDINT with the actual sensitive variables during execution.
Specifically, we use Intel Pin [19] to dynamically capture the
sensitive variables during execution. The results are shown
in Figure 4 and Figure 5. A key observation from these two
figures is that the number of sensitive variables used during
execution is significantly smaller than the number of sensitive
variables identified by our method. A comparison result shows
that all sensitive variables and dependent data used during
execution is identified by our identification method, which
indicates that our sensitive variable identification method may
over-identify, but not lose any sensitive variables. This en-
sures SECDINT can provide effective protection against data-
oriented attacks.

B. Binary Instrumentation Efficiency
1) File Size Overhead: We compare the file size of in-

strumented binaries with the original binaries. The results are
whown in Figures 6 and 7. The average space overhead is
39.7% for COREUTILS and 4.1% for SPEC CPU. This result
meets our exception that the overhead for COREUTILS is larger
than SPEC CPU. The resason is that the original COREUTILS
binaries are relatively smaller than the SPEC CPU binaries,
while the total size of the enclave codes is roughly one third
of the size of the COREUTILS. For instance, the original
cat binary has 14938 lines of code. After instrumentation,
it increases to 19134 lines of code.

2) Run-time Execution Overhead: To run-time overhead
is mearsured with the SPEC CPU benchmarks. The results
are shown in Figure 8 with an average execution overhead
of SPEC is 128%. To better understand the execution time
overhead of our approach, we also measured the execution
times of accessing data in the ordinary memory (i.e., memory
outside the enclave) and the enclave. We designed a program
that repeatedly reads/writes data from/to the ordinary memory
and the enclave, and calculated the average execution time
for each operation. Results show that accessing data in the
enclave is around 300 times slower than accessing data in

the ordinary memory, which indicates that when enforcing
SECDINT, more sensitive variables to be protected can lead to
more execution time overhead. Therefore, the set of sensitive
variables should be as small as possible in order to minimize
the performance overhead.

C. Optimization Improvement
In this section, we describe the results of the optimiza-

tion design. As disscussed, refining sensitive variables will
lead to a significant performance improvement. To evaluate
effectiveness of this optimization design, we compare the run-
time overheads for with and without optimization. The results
are shown in Figure 9, which indicates that the optimization
method can achieve significant performacne improvement for
SECDINT. The average run-time execution overhead is re-
duced by 56.7%. The results also show that, with the opti-
mization, the run-time overhead can be significantly reduced
to as low as 20.1%.

D. Mitigating Attacks
To evaluate if SECDINT is able to prevent data-oriented

attacks, we implemented multiple real-world data-oriented
attacks and tested our design with them.

1) GHTTPD: GHTTPD is a lightweight HTTP server.
A buffer overflow vulnerability in the Log function allows
attackers to execute arbitrary code via overwriting the function
return address (CVE-2002-1904 [28]). This vulnerability can
be used to launch a privilege escalation attack against non-
control I/O data [9]. Code 5 shows the related code snippet
of this attack. The ptr variable on line 2 is a pointer that
points to the text string of the URL request from clients. This
pointer is further passed to the Log() function on line 7.
At the beginning of the Log() function, the register that
holds the ptr variable is pushed on the stack, which can be
overwritten by the memory error on line 15. Therefore, after
Log() returns on line 7, the ptr variable can be corrupted
by an attacker and further processed on line 9.

This attack is difficult to detect by existing mechanisms,
because all control flows of this program are legitimate.
However, SECDINT is able to identify the ptr as a sensitive
variable, because it is used as a conditional branching data
as well as a parameter in the strstr() library function.
Although the memory error may overwrite the stack memory
without other protections, the value of ptr is loaded from the
enclave instead of the ordinary memory, which prevents this
attack from being effective. After enforcing SECDINT on the

bzip2

grom
acs

h264ref

hm
m

er

lbm
libquantum

m
cf

m
ilc

perlbench

sjeng

sphinx3

0

1

2

3

4

F
ile

 s
iz

e
 (

M
B

)
Base
AutoEnclave

Fig. 7. SPEC space overhead.

bzip2

grom
acs

h264ref

hm
m

er

lbm
libquantum

m
cf

m
ilc

perlbench

sjeng

sphinx3

0

20

40

60

80

100

120

E
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
) Base

AutoEnclave

Fig. 8. SPEC execution time overhead.

bzip2

grom
acs

h264ref

hm
m

er

lbm
libquantum

m
cf

m
ilc

perlbench

sjeng

sphinx3

0

20

40

60

80

100

120

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d
) Without optimization

With optimization

Fig. 9. Performance improvement over optimization.

GHTTPD programs, 48 sensitive variables are automatically
identified without the optimization method, and 34 sensitive
variables are extracted by the optimization method. The averge
execution time overhead is 68.4% without the optimization
method and 27.2% with the optimization method.

1 i n t s e r v e c o n n e c t i o n (i n t s o c k f d) {
2 c h a r * p t r ;
3 . . .
4 i f (s t r s t r (p t r , ” / . . ”))
5 . . . / / r e j e c t t h e r e q u e s t
6 g e tpee rna me (. . .) ;
7 Log (” C o n n e c t i o n from %s , r e q u e s t = GET %s ” ,

i n e t n t o a (sa . s i n a d d r) , p t r) ;
8 i f (s t r s t r (p t r , ” cg i − b i n ”))
9 . . . / / h a n d l e c g i r e q u e s t

10 }
11 v o id Log (c h a r * fo rmat , . . .) {
12 c h a r temp [2 0 0] , temp2 [2 0 0] , l o g f i l e n a m e [2 5 5] ;
13 . . .
14 v s p r i n t f (temp , fo rmat , ap) ; / / b u f f e r o v e r f l o w }

Code 5. Code snippet of GHTTPD.

2)WU-FTPD: WU-FTPD is a popular FTP server for Unix-
like systems. As mentioned in Section III-A, by making use of
a format string error, an attacker can tamper the pw->pw_uid
parameter associated with the setuid system call to escalate
the user privilege. SECDINT successfully prevent this attack
by isolating the pw->pw_uid parameter in the enclave mem-
ory. After applying SECDINT on the WU-FTPD applications,
368 sensitive variables are automatically identified without the
optimization method, and 134 sensitive variables are extracted
with the optimization method. The average execution time
overhead is 58.2% without the optimization method and 24.9%
with the optimization method.

3) Null HTTPd: Null HTTPd is a multi-threaded web
server for Linux. This server has a heap overflow that an
attacker can pass a negative content length of value to the
server to modify the allocation size of the buffer in memory
through the free() function (CVE-2002-1496 [4]). In [9],
this vulnerability is further utilized to launch a data-oriented
attack. The key idea of this attack is to corrupt the CGI-
BIN configuration string, which holds the program’s directory
that could be executed in the future while processing HTTP
requests. Since the CGI-BIN configuration string is an I/O
parameter in the program, SECDINT identifies it as a sensitive
variable and enforces the binary to access it in the enclave.
After applying SECDINT on this program, the performance

overhead with and without the optimization method are 62%,
and 29%, respectively.

E. Discussions and Limitations
Our approach leverages multiple tools to achieve its goals

and it may have potential limitations: (1) Our approach in-
tegrates UROBOROS [32] as an instrumentation tool to insert
SGX instructions into binaries. One drawback of this technique
is its inability to fully support C++ disassembly due to the
complexity of section structures in binaries compiled from
C++. A solution in [32] addresses this issue by dumping and
symbolizing the .ctors and .init_array section. (2)
Variables might be referenced by pointers, which are powerful
programming constructs. Currently, SECDINT has limitations
in identifying variable pointers. We plan to implement point-
to analysis to identify the set of memory locations that a
pointer may point to. (3) The DFG recovery tool utilized in
our approach is based upon the CFG generated by ANGR,
employing forced execution, and symbolic execution. These
two techniques are effective in managing indirect jumps.
Nevertheless, the DFG resulting from these techniques lacks
soundness, as it solely mirrors states within the CFG, encom-
passing the array of potential values. (4) Currently, SECDINT
cannot fully identify dynamically loaded library function calls.
Because these libraries wait to load until they are needed
during execution, statically identify them become challenging.

VII. RELATED WORK

Data-oriented attacks were first demonstrated by Pincus and
Baker [27]. They categorized attacks that target only critical
data structures as pure data attacks. Then, attacks of this type
were extensively studied by Chen et al. [9], who showed
that these attacks can have serious implications among real-
world applications. Hu et al. [16] developed a solution to
automatically construct non-control data exploits. The key idea
is to automatically stitch together multiple existing data flows
to corrupt target variables in a program, thereby alleviating
the efforts of human analysis. Recently, Hu et al. published a
more advanced work that can craft data-oriented attacks with
rich expressiveness by identifying data-oriented gadgets in
programs [17]. Remarkably, the exploited program could still
follow the CFG, which makes the attack difficult to combat.

Many mechanisms have been proposed to combat data-
oriented attacks. Data-flow integrity ensures that the flow of
data in a vulnerable program remains within a data-flow graph
[6]. The data-flow graph is generated through static analysis,

making the defense coarse-grained. Another category of de-
fense mechanisms focused on enforcing type- and memory-
safety on systems. Softbound [21] has brought memory safety
to un-safe C language by using bound checking with fat-
pointer. CETS [22] enhanced this method by preventing mem-
ory management errors. Importantly, these strategies either
suffer from a high performance overhead without hardware
acceleration or can only be deployed in very limited usage
scenarios [10]. Moreover, these strategies may be got around
by advanced attacks due to the inherent vulnerabilities of
software-based mechanisms [10].

Another drawback of these defenses is that they require
significant changes of a program’s source code to adopt the
safe dialects. Newsome et al. proposed a defense mechanism
that does not require source code to protect programs against
data-oriented attacks [24]. This approach uses dynamic taint
analysis to label all critical data, tracking the propagation
of tainted data, and thereby detecting over-write attacks by
identifying the integrity of tainted data. However, programs
protected by this technique run 24 times slower, which proves
excessively expensive for widespread adoption.

VIII. CONCLUSIONS

In this paper, we presented SECDINT, an automated and
practical system harnessing the Intel SGX to protect sensitive
variables from data-oriented attacks. We developed an identifi-
cation method to automatically identify variables that are vul-
nerable to data-oriented attacks within binaries. Additionally,
we designed an optimization approach to minimize perfor-
mance overhead. Through performing extensive experimental
evaluations using COREUTILS, SPEC CPU, and multiple
real-world applications, our finding underscore SECDINT’s
effectiveness in accurately identifing sensitive variables, re-
inforcing data integrity, and thwarting data-oriented attacks.
Comparative analysis with existing software-based strategies
(e.g., 103% run-time overhead in Data-flow Integrity, 116%
in SoftBound with CETS), showcased SECDINT’s remarkable
capability in drastically reducing overhead to as low as 20.1%.

IX. ACKNOWLEDGEMENT

Dakun Shen was supported by Zhejiang Science and Tech-
nology Department under Grant No. 2023C01001.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity.
In Proc. of ACM CCS, 2005.

[2] S. V. Acker, N. Nikiforakis, P. Philippaerts, Y. Younan, and F. Piessens.
ValueGuard: Protection of native applications against data-only buffer
overflows. In Proc. of ICISS, 2010.

[3] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining light
on shadow stacks. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 985–999. IEEE, 2019.

[4] D. Cahill. Heap-based buffer overflow in Null HTTPd Server
0.5.0 and earlier. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2002-1496.

[5] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-
flow bending: On the effectiveness of control-flow integrity. In Proc. of
USENIX Security, pages 161–176, 2015.

[6] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. In Proc. of USENIX OSDI, 2006.

[7] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang,
Weide Zheng, and Xuanhua Shi. Safestack: Automatically patching
stack-based buffer overflow vulnerabilities. IEEE Transactions on
Dependable and Secure Computing, 10(6):368–379, 2013.

[8] Quan Chen, Ahmed M Azab, Guruprasad Ganesh, and Peng Ning.
Privwatcher: Non-bypassable monitoring and protection of process cre-
dentials from memory corruption attacks. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
pages 167–178, 2017.

[9] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data
attacks are realistic threats. In Proc. of USENIX Security, 2005.

[10] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas Nyman,
Haipeng Cai, Trent Jaeger, N Asokan, and Danfeng Yao. Exploitation
techniques for data-oriented attacks with existing and potential defense
approaches. ACM Transactions on Privacy and Security (TOPS),
24(4):1–36, 2021.

[11] Standard Performance Evaluation Corporation. SPEC CPU 2006. https:
//www.spec.org/cpu2006/.

[12] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee. Efficient
protection of path-sensitive control security. In Proc. of USENIX
Security, 2017.

[13] A. Fog. Calling conventions for different c++ compilers and operating
systems, 2017.

[14] A. Fog. Optimizing subroutines in assembly language, 2018.
[15] Tao Hou, Shengping Bi, Mingkui Wei, Tao Wang, Zhuo Lu, and Yao

Liu. When third-party javascript meets cache: Explosively amplifying
security risks on the internet. In 2022 IEEE Conference on Communi-
cations and Network Security (CNS), pages 290–298. IEEE, 2022.

[16] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic
generation of data-oriented exploits. In Proc. of USENIX Security, 2015.

[17] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control data
attacks. In Proc. of IEEE S&P, pages 969–986, May 2016.

[18] Intel. Intel Software Guard Extensions (Intel SGX). https://software.
intel.com/en-us/sgx.

[19] O. Levi. Pin - a dynamic binary instrumentation tool, 2018.
[20] Microsoft. Data Execution Prevention (DEP). https://msdn.microsoft.

com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx.
[21] S. Nagarakatte, J. Zhao, M. M.K. Martin, and S. Zdancewic. SoftBound:

Highly compatible and complete spatial memory safety for C. In Proc.
of ACM PLDI, 2009.

[22] S. Nagarakatte, J. Zhao, M. M.K. Martin, and S. Zdancewic. CETS:
Compiler enforced temporal safety for C. In Proc. of ISMM, 2010.

[23] J. Newsome. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. 2005.

[24] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis
for automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In NDSS, 2005.

[25] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen,
Andrew Paverd, N Asokan, and Ahmad-Reza Sadeghi. Hardscope: Hard-
ening embedded systems against data-oriented attacks. In Proceedings
of the 56th Annual Design Automation Conference 2019, pages 1–6,
2019.

[26] PAXTEAM. PaX Address Space Layout Randomization (ASLR). http:
//pax.grsecurity.net/docs/aslr.txt.

[27] J. Pincus and B. Baker. Beyond stack smashing: recent advances in
exploiting buffer overruns. IEEE Security & Privacy, 2(4):20–27, July
2004.

[28] qitest1. Buffer overflow in the Log function in util.c in GazTek ghttpd
1.4. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1904.

[29] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker,
and Benjamin Zorn. Modular protections against non-control data
attacks. Journal of Computer Security, 22(5):699–742, 2014.

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
SOK: (state of) the art of war: Offensive techniques in binary analysis.
In Proc. of IEEE S&P, pages 138–157, 2016.

[31] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and Giovanni Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, 2016.

[32] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassem-
bling. In Proc. of USENIX Security, 2015.

[33] M. Zalewski. SSH CRC-32 Compensation Attack Detector Vulnerability.
https://www.securityfocus.com/bid/2347.

